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Testing : Key ldeas

What is Testing, Errors and Different Types of Tests
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Testing, Errors and Different Types of Tests

» In this chapter we will learn a new technique in inferential statistic, known as Hypothesis
Testing, or in short often we just say - Testing.

P Testing problem is slightly different than estimation, here
> First, we start with fwo competing hypotheses about the unknown population parameter, one is

called “Null Hypothesis” and the other one is “Alternative Hypothesis”. We then use the sample data
to reject or accept the Null Hypothesis.

> Question is -
What is a hypothesis?

Ans: It’s simply a conjecture about the population parameter.

P Let's see an example.
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Testing, Errors and Different Types of Tests

» Continuing from the problem we introduced in the last chapter, suppose we have an
information that the unknown population mean income p is less than 24,000, now we would
like to test whether u < 24,000, is true, to do this we can form two hypotheses as follows,

Ho : pt > 24,000 Null Hypothesis
H,:p < 24,000 Alternative Hypothesis

> Now after we are done with constructing the hypotheses, we use a random sample (or data)
to either reject the Null or accept the Null. Acceptance is sometimes written as fail to reject,
however in this chapter we will avoid these philosophical issues!

» Two important points,
i) What we believe is written in the alternative (this is often the convention, however not necessary!)

i) Notice! Everything is happening around Null. So we are either rejecting the Null or accepting
the Null (Why? We will come back to the answer later!)

> Since in practice we never know where is j, so in this setting we can make two types of
errors, which are known as Type I Error and Type Il Error, and also there are two scenarios
where we are correct, let’s see this now
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Testing, Errors and Different Types of Tests

Population Reality
Hy True H,; True
Conclusion ~ Accept Hy | Correct Conclusion  Type Il Error
Reject Hyp Type | Error Correct Conclusion

» Before interpreting the table, first of all, always remember
we do not know what is u

P> Now the table says, if the hypothesized Null is actually true and after the testing we accept
Null, then there is no error, but if the hypothesized Null is true and we reject the Null then
we will make an error and the error is called Type-l error....Can you interpret other cells of
the table?

P |deally we want to construct a test that minimizes both of these errors, but actually for a
fixed sample size, this is impossible. So the idea is we fix the Type-I| error and look for a
test which minimizes the Type-Il error. We won't go to more theoretical details here... in
our testing procedure we will always fix Type-I error and our procedure will minimize Type-II
error...

> Let's replace the hypothesized information 24,000 with jio, essentially this is the value of
the unknown parameter where we are dividing the parameter set. In this case we will now
think about following three formations of testing
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Testing, Errors and Different Types of Tests

Two Tail test
Ho:p = pio
Ha: i # po

Upper Tail test
Ho. : pt < o
H,:u> o

Lower Tail test

Ho. 1 p = po
HaI]A<}40

P Together the last two tests are called - One tail tests. The word tail is coming from the tail
of the Normal distribution...but you will understand later why this naming...
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Testing : Key ldeas

Test Statistic and Sampling Distribution in Testing
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Test Statistic and Sampling Distribution in Testing

» In the hypothesis testing again we will use the sampling distribution of X. Recall before we
called X an estimator of p.

» In the Hypothesis testing we won't call this an estimator, rather we will call it a Test
Statistic. In general often a Test Statistic is same or very similar to a point estimator, but its
a Statistic, which is simply a function of the random sample

» When a Statistic is used for estimation we call it an Estimator. Similarly, when a Statistic is
used for Testing we call it a Test Statistic. These are just some naming conventions that you
need to know.
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Test Statistic and Sampling Distribution in Testing

> For example X = %27:1 X; is a function of random sample, so this is a statistic. When we
use it for point estimation, we call this point estimator, but if we use it for hypothesis
testing we call it a Test Statistic.

> Before we said the distribution of the estimator is called sampling distribution, actually more
generally the probability distribution of a Statistic is called Sampling Distribution. So here
the distribution of X is a sampling distribution (old stuff!)

> Again we will use the three old results (below we always assume i.i.d.)
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Test Statistic and Sampling Distribution in Testing

> Result 1: If the population data is normal with u and ¢2, then X ~ N'(u,0?/n), we can use this if we
know o. In this case we often use Z statistic, where

z=X=n

and Z ~ N(0,1)
7
> Result 2: If the population data is normal, but we don’t know o, then we use T statistic, where

X —
= Sy and T ~ t,1

7

where S is the sample standard deviation, Note that in these cases,

T

2
- — o
E(X)=pand V(X) = —
however in the second case we cannot calculate the variance, hence we use an estimator of the
variance, which is $2/n, and we can write this as,
s
V(X) ==

n

12/58



Test Statistic and Sampling Distribution in Testing

> Result 3: If the population data is not normal we cannot use exact distributions like above, rather we
need to use an approximation following Central Limit Theorem (CLT), in that case, we use the Z
Statistic

X-E(X rox
Z= % and when n is large we have Z "X N/(0,1)

X—-E (X
# and when n is large we have T K7 N (0,1)

where V(X) is the estimator for the variance of X. Important is T follows A/(0,1) when the
sample size n becomes very large, this is called Asymptotic Normality of the test statistic.
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Test Statistic and Sampling Distribution in Testing

CLT in Bernoulli case:
Note it's an approximation and the data may or not be normal. For example, if the population
distribution is Bernoulli (i.e., 0 or 1 data, think about Gender), then target parameter is

E(X)=pwhere P(X=1)=p
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2. Z Test (¢ known)



Z Test (0 known)
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Different z-Tests

First Example and Steps

The following example is slightly modified from Anderson et al. (2020)).

The Bangladesh Golf Federation (BGF) establishes rules that manufactures of golf equipment must meet if
their products are to be acceptable for use in BGF events. Company ABC uses a high-technology
manufacturing process to produce golf balls with a mean driving distance of 295 yards. This is what it
advertises to sell its balls.

Sometimes, however, the process gets out of adjustment and produces golf balls with a mean driving
distance different from 295 yards. When the mean distance falls below 295 yards, the company worries
about losing sales because the golf balls do not provide as much distance as advertised. When the mean
distance goes above than 295 yards, ABC also worries because golf balls may be rejected by the BGF for
exceeding the overall distance standard concerning carry and roll.

ABC'’s quality control department takes time to time a sample of 50 golf balls to monitor the
manufacturing process. It calculated the sample mean of 50 golf balls and found it is to be 297.6.

For this sample, now the department wants to do hypothesis testing to determine whether the process has
fallen out of adjustment. Develop the null and alternative hypotheses and do the testing at 5% level of
significance, and also do the test, suppose somehow the quality control team knows that population
distribution is Normal and standard deviation of all golf balls is ¢ = 12.
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Different z-Tests

First Example and Steps

» How do we develop the Null and Alternative Hypothesis? Note that, both below and above
of 295 is problematic for the company. So the proper formation is, (notice here jio = 295)

>
>
>
>

Hg : =295
Hy:p #1295
» From the story, we know

n =50

x = 297.6

a = 0.05

Mo = 295

=12

>

» What does the company want? It's clear that the company would like to accept the Null.
This is because if the company rejects the Null then it's costly, why? maybe because it has
to change its entire production process.

> We will directly use standard normal distribution (although not necessary in this case),
which we denoted with A/(0,1) to do the testing of the ABC company, here are the steps
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Different z-Tests

First Example and Steps

Algorithm 1: Two Tail Test : ¢ known

[

N

s W

2}

o

Input: X, o, n, po, &
Output: Reject Hy or Accept Hy

Formulate the hypotheses Hy and H, properly such that

Ho : p = po
Ha:p # o
Calculate the value of the Z Statistic which is z., using the formula
_ XM
Zcale = U’/\/ﬁ
Calculate the critical values z , and z,_ , using N(0,1)

if e > Zia or Zegle < z,, then
2 2

L Reject Hy

else
L Accept Hy
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Different z-Tests

First Example and Steps

Recall here the critical values are such that,

P(Z<z,)=a/2 and P(Z<z ,)=1-a/2
2 2
here is the picture of critical values...
f(z)
a/2 «/2

Za /2 0 %l—a/2

Figure 1: Density Function of Standard Normal Distribution with Two Tail Critical Values

The QR code is also very simple, this is optional only for the QR learners. We will see the
Excel work in the class.
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Different z-Tests

First Example and Steps

Q@ code - sigma known, two-tail (using standard normal)

# First give the data and calculate zcalc
n <- 50

xbar <- 297.6

alpha <- 0.05

mu0 <- 295

sigma <- 12

zcalc <- (xbar - mu0)/(sigma/sqrt(n))

# check the value
zcalc
# [1] 1.532065

# (alpha/2) quantile of the standard normal
qnorm(alpha/2)
# [1] -1.959964

# (1 - alpha/2) quantile of the standard normal
qnorm(1 - alpha/2)
# [1] 1.959964
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Different z-Tests

First Example and Steps

» In our problem, z.,. = 1.532

> Also

» z,/2 = zo2s = —1.96, this is the .025th quantile or 2.5th percentile of the standard normal
distribution.

» 21 42 = zg75 = 1.96, this is the .975th quantile or 97.5th percentile of the standard normal
distribution.

P> So we can see that
—1.96 < 1.532 < 1.96

or

< Zeale < Z,

Zu/2 1-a/2

» So this means our transformed sample mean 1.532 does not fall in the rejection region, so
we accept the Null....bottomline the ABC company is happy

» Now we can adjust the problem slightly for example,
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Different z-Tests

First Example and Steps

Problem Changed... (modified for upper-tail test)

ABC only checks whether the average distance is at max 295, but worries if the average distance
exceeds 295.

» This happens when the company is worried about the golf balls being rejected by the BGF
for exceeding the overall distance standard concerning carry and roll. In this case, the
company is worried about the average distance exceeding 295 yards. So the proper
formation of the hypotheses is, (notice here yg = 295)

HO U S 295
H,:p > 295
» Note the word upper is coming from the alternative hypothesis.

» Similarly, we can think about
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Different z-Tests

First Example and Steps

Problem Changed... (modified for lower-tail test)

ABC only checks whether the average distance is at least 295, but worries if the average distance
is below 295.

» This happens when the company is worried about losing sales because the golf balls do not
provide as much distance as advertised. In this case, the company is worried about the
average distance falling below 295 yards. So the proper formation of the hypotheses is,
(notice here o = 295)

Ho : > 295
H,:p <295
» This is called the lower tail test,

P The steps are similar,
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Different z-Tests

First Example and Steps

Algorithm 2: Upper Tail Test : ¢ known

Input: X, 0, n, po, &
Output: Reject Hy or Accept Hp

[

Formulate the hypotheses Hy and H, properly such that

Ho:u <o
Hy:u> o

N

Calculate the value of the Z Statistic which is z., using the formula

Zcale = Y_]/l[)
€T o/\/n
using M (0,1)

w

Calculate the critical value z,

4 if zy >z, then
5 L Reject Hy
6 else

7 L Accept Hy
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Different z-Tests

First Example and Steps

Algorithm 3: Lower Tail Test : ¢ known

-

N

& W

o

Input: X, 0, n, po, &
Output: Reject Hy or Accept Hp

Formulate the hypotheses Hy and H, properly such that

Ho :p > po
H,:p <o
Calculate the value of the Z Statistic which is z., using the formula
=
Calculate the critical values z, using A/(0, 1)
if z < z, then

L Reject Hy

6 else

L Accept Hy
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Different z-Tests

First Example and Steps

» The codes are similar, and you should be able to adjust it... and here the error regions for
the upper and lower tail tests,

£(=) f(2)

Za 0 0 Zl—a

Figure 2: Density Function of Standard Normal Distribution with Lower-Tail Critical Values (Left)
and Upper-Tail Critical Values (Right)
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3. T-Tests (¢ un-known)



T-Tests (¢ un-known)
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Basics of T-Tests

» Now we will learn t-test where we don't assume that we know the population standard
deviation o, rather we estimate it using s it from the sample data. Recall the formula for s,
which is

P The whole process will be similar to z-test however we will calculate the value of the
T-statistic which is

X*]IO

teale =
7
> And then compare this with the critical t values, for example t;_,/2, ty/2, ty and t;_4, and

then decide whether to reject the Null or not. Note that these values are coming from the
t-distribution, which is denoted as t,_1, where n — 1 is the degrees of freedom (in short df)

> If you want to calculate the critical values from the t,_1 using @then, the function is qt,
in this case,

ty2 =qt(a/2,n—1)
t1_q/2 =qt(l—a/2,n—1) and so on...

30/58



Basics of T-Tests

» You should remember that we are still on the assumption that the data is coming from the
normal distribution, however unlike the Z test, in this case we don’'t assume that we know
the population standard deviation ¢, and this is why according to the Theorem 1.2, we are
using the t-distribution. Recall the random quantity in this case is,

X—p
T=
S
vn
and
T ~th 1

> Finally, again, the whole testing procedure for two-tail and one-tail tests are similar, so |
won't repeat them in the slides here.
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What is the Intuition Behind Hypothesis Testing?
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Intuition Behind Hypothesis Testing

>

»

Recall whenever we are doing testing, we are always rejecting or accepting Hy (or Null), in
the math we are also using po which is coming from when unknown u = g

In fact in testing we are actually using sampling distribution under the Null, and we are
checking whether the sample mean falls in the rejection region or not. The « is the
rejection region which is also an area when we are looking at the Null distribution (and this
is type-1 error)

The idea is when our sample mean is coming from the extreme part, chances are that it's
not coming from the Null distribution, and this is why we reject the Null. Similarly when
our sample mean is coming from the middle part, chances are that it's coming from the
Null distribution, and this is why we accept the Null, following picture will be useful,
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Intuition Behind Hypothesis Testing

—— Null Hypothesis.
—— Alternative Hypothesis

o H1
chances are @ z chances are
l«'lgl« thot null is correct h?gl‘\ that null is not correct

Figure 3: The Sampling Distribution of X ~ A (pg,0?/n) on the left (this is under Hp), and
X ~ N (p1,0%/n) on the right (this is one possible alternative)
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Intuition Behind Hypothesis Testing

» The reason we are looking at the null since this is distribution where we can check, in H;
we have too many possibilities...

36 /58



5. Proportion Testing



Proportion Testing
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Testing for Population Proportion p

» The problem of Population Proportion is similar, but here we have a Bernoulli random
variable,

P> Suppose we would like to test that the population proportion of the female students at
EWU is 64%, in this case we can formulate a hypothesis,

Ho : p=0.64
H,:p#0.64
» Where p is the population proportion, in this case it is the proportion of female students at
EWU.
» This is a two tail test, but we can also think about other formations like
Ho:p <0.64
H,:p>0.64
> or
Ho:p > 0.64
H,:p <0.64

P So the basics of proportion testing is exactly same as the tests we saw for mean y, only
now our target parameter is population proportion.
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Testing for Population Proportion p

P In this case we can think about a Bernoulli random variable X that represents Gender of a
student, where X = 1 means female and X = 0 means male.

P In this case the population mean, is

E(X)=P(X=1)=p
where p is the population proportion of the female students at EWU.

> And we also know that the variance of the Bernoulli random variable is

V(X) =p(1-p)
» In this case we also calculate the sample mean X, which is the sample

X — 27:1 Xi
n

» However the sample mean in this case is the sample proportion of the female students (do
you see why?)
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Testing for Population Proportion p

P Again assuming we have a sample of n students, and we have an iid sample, the theory tells
us that (Look at Theorem 1.1)

E(X) = p and V(X) = @

> Question is what is the sampling distribution of X, here we will use Theorem 1.3, which is a
large sample result, which says, if we construct the Z Statistic like following,
_X-EX) _ X-p

Z =
V(X) p(1—p)

» Then if the sample size is large, or n — oo, we have

Z PR N(0,1)

P This means if the sample size is large, then in the large sample we can again use Normal
distribution,

P The testing approach in the proportion testing is exactly similar, | give the details for the
two-tail test, but you can adjust the code for the upper and lower tail tests,

41/58



Testing for Population Proportion p

Algorithm 4: Two Tail Test For Population Proportion

-

~

w

I

o

o

Input: X (this is same as p), n, po, &
Output: Reject Hy or Accept Hy

Formulate the hypotheses Hy and H, properly such that

Ho:p=po
H.:p# po

Calculate the value of the Z Statistic which is z.,c using the formula

Calculate the critical values z , and 2 a2 using N(0,1)

/2
if ze >z, OF zyge < z, then
=5 3
L Reject Hy

else
L Accept Hy

42/58



Testing for Population Proportion p

» For the one tail tests the idea is same, but the critical values are different, but based on the
past tests, you should be able to just easily. Let's do an applied problem, this is question 38
from Chapter 9.5

A study by Consumer Reports showed that 64% of supermarket shoppers believe
supermarket brands of ketchup to be as good as national name brands. To investigate
whether this result applies to its own product, the manufacturer of a national name-brand
ketchup asked a sample of shoppers whether they believed that supermarket ketchup was as
good as the national brand ketchup.

a. Formulate the hypotheses that could be used to determine whether the percentage of
supermarket shoppers who believe that the supermarket ketchup was as good as the
national brand ketchup differed from 64%.

b. If a sample of 100 shoppers showed 52 stating that the supermarket brand was as good
as the national brand, then at & = .05 should the national brand ketchup manufacturer be
pleased with this conclusion?

» In this case we have the following information,
» po = 0.64 (hypothesized population proportion)

> n=100
» X =52/100 (which is sample proportion, also written as p )
> a=0.05

» Now you can calculate z.,c, should be able to do the test.
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6. p-value approach of doing test



Hypothesis Testing

How to do hypothesis testing (Using p-value)

» The methods we used to do hypothesis testing (both for z-test and t-test) is known as
critical value approach. There is another approach of doing the test, which is called p value
approach.

P It's important that both way of doing the tests will give you same answer, but p value
approach has some advantages.

> Question: what is a p-value?

In simple words, p-value is the lowest probability at which Hy can be rejected. Or we can say it is
the smallest significance level at which we can reject the Null.

» For example, if we are testing a given hypothesis with « = 0.05 and we calculated the p
value equal to 0.03, then in the p—value approach we will compare a with p-value and
come to a conclusion.

» The calculation of p-value is quite easy, but before this let's explain it, in the following the
p value is shown for the upper tail test,
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Hypothesis Testing

How to do hypothesis testing (Using p-value)

=)

p<a

So we reject the null

) Zeale

Figure 4: In this case the p value is the probability of the orange shaded area, which is the right
side of the zc, which is p = P(Z > zec)

Q code - p value for upper tail

# p value calculation

pvalue <- 1 - pnorm(zcalc)

P For lower tail test, we have the following figure
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Hypothesis Testing

How to do hypothesis testing (Using p-value)

p<a

So we reject the null

a

/

e

i

=)

Zeale

0

Figure 5: In this case the p value is the probability of the orange shaded area, which is the left side

of Zgaic, which is p =P(Z < zea1c)
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Hypothesis Testing

How to do hypothesis testing (Using p-value)

P In this case you have two options, first you can use pnorm(zcalc), but since because of the
symmetry the probability of the left will be same on the right, we can also calculate the
right probability of the absolute value of z.,c, which is can be done using

Q code - p value for lower tail

# p value calculation

pvalue <- 1 - pnorm(abs(zcalc))

> Actually you can blindly apply the above formula both for the lower and upper-tail tests,
since when z,|¢ is positive the absolute value function will not change anything when z.,
is positive,

P> So this means both for lower and upper tests, you can use the same formula which is

Q code - p value for both lower and upper tail

# p value calculation

pvalue <- 1 - pnorm(abs(zcalc))
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Hypothesis Testing

How to do hypothesis testing (Using p-value)

> For the two-tail test (I don't give the picture ...) but, you can imagine we need to multiply
with 2, since in this case there are rejection areas in both sides, so

Q code - p value for both lower and upper tail

# p value calculation

pvalue <- 2 * (1 - pnorm(abs(zcalc)))
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Hypothesis Testing

How to do hypothesis testing (Using p-value)

P So you should think p value is like a probability and it should always be between 0 and 1.

The rejection rule using p-values is always same that is

reject the Nulll Hp if p < &

P In the p-value approach we are comparing probabilities vs. probabilities, where in critical
value approach, we are comparing z values vs. z values.

» For the t-test the calculation is similar, you just have to replace the function
pnomr (abs(zcalc)) with pt(abs(tcalc), df = n-1).
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Hypothesis Testing

How to do hypothesis testing (Using p-value)

>

| 4

Why do we use p-value approach? First of all, although difficult to understand at a first
glance, it's simpler to apply, since the rejection rule is always same that is p < a.

Also there is one clear benefit of the p value approach over the critical value approach, that
is if we are asked to do the same test for different a, for example we are doing the same
test for « = .10, « = .05 and & = .01, in the p-value approach we can compute the p-value
only once and the can compare it different « values. Only one calculation is enough. This is
very convenient.

In the critical value approach, every time we change a, we need to calculate the critical
values again to do the test. For example if we change «, then we need to calculate z, or
Z1-q OF Zy/p OF Zj—, /2 again to do the test. This is very cumbersome....
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Testing Summary
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Testing Summary

Here is the summary of the two procedures for the z-test

Lower-Tail Test | Upper-Tail Test | Two-Tail Test

Hypotheses Ho:p > o Ho:pu <o Ho:p=po
Hy:p <o Hy:p > o Hy:p # o

Value of the Test Statistic, Zeale = ;7—\’;% Zeale = ;7—\’;% Zeale = ;;—\}/I%
Here we use z-statistic
Rejection Rule (Reject Hp) if Zeae < 2y if Zeate > z1-4 if Zeate < 2472
(Critical Value Approach) Of Zeale > Z1_y/2
Rejection Rule (Reject Hp) if p<a ifp<a ifp<a

(p Value Approach)

Table 1: z-test summary of the two approaches
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Testing Summary

Here is the summary of the two procedures for the t-test

Lower-Tail Test | Upper-Tail Test | Two-Tail Test

Hypotheses Ho:yu > o Ho:p <o Ho :pu=po
Hy:pu <o Ha:u> o Hy i # o

Value of the Test Statistic, teale = % teale = %5% teale = %
Here we use t-statistic
Rejection Rule (Reject Hp) if teare <t if teale > ti—a if teaie < tyyo
(Critical Value Approach) of teale > t1_ny2
Rejection Rule (Reject Hp) ifp<a if p<a ifp<a

(p Value Approach)

Table 2: t-test summary of the two approaches
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Testing Summary

Lower-Tail Test Upper-Tail Test Two-Tail Test
Hypotheses Ho:p > po Ho:p < po Ho:p=po
H,:p < po Ha:p>po Ha:p # po
ok _ X—Pg _ X—Ppg _ X—Ppg
Value of the Test Statistic, | zee = i) Zeale = i) Zeale = ey
n n n

Here we use z-statistic

Rejection Rule (Reject Hp)
(Critical Value Approach)

Rejection Rule (Reject Hp)
(p Value Approach)

if Zcale < Zy

ifp<a

if Zcalc > Z1—u

ifp<ua

if Zcalc < Zy/2

or Zeaje = Z1-n/2

ifp<ua

Table 3: z-test summary for proportions, here X is same as p
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