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Scatter Plot, Covariance and Correlation

▶ We already know objects like probability distriution, expectation and variance. So far we
have seen only for a single variable cases, both for discrete and continuous random variables.
We will now see how to extend these concepts for multiple variables, and how to use them
to understand the relationship between two random variables. Important concepts are
▶ Joint Distribution,
▶ Covariance and Correlation.
▶ Marginal distribution (related to Marginal Expectation and Marginal Variance)
▶ Conditional distribution (related to Conditional Expectation and Conditional Variance)
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Scatter Plot, Covariance and Correlation

▶ Recap of Expectation and Variance Formulas
▶ Recall for discrete random variable X with probability mass function fX (x), we have

E(X ) = ∑
x

x · fX (x)

Suppose if we have X with following probability distribution,
Value of X Probability fX (x)

1 0.2
2 0.2
3 0.6

Then we can calculate expectation as follows,

E(X ) = 1 · 0.2 + 2 · 0.2 + 3 · 0.6 = 2.4
▶ Ques: What is the intuition behind the Expectation formula? Ans: It gives you population

mean without using the population.
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Scatter Plot, Covariance and Correlation

▶ And for variance we have two formulas, the definition is

V(X ) = E[X − E(X )]2

▶ We can directly apply this definition, and get

V(X ) = (1 − 2.4)2 · 0.2 + (2 − 2.4)2 · 0.2 + (3 − 2.4)2 · 0.6 = 0.64
▶ However there is a shortcut formula for variance (can you derive this?), which is

V(X ) = E(X2)− E(X )2

where we can calculate E(X2) as follows,

E(X2) = 12 · 0.2 + 22 · 0.2 + 32 · 0.6 = 6.4
Then we can calculate variance as follows, both will give you same result,

V(X ) = E(X2)− E(X )2 = 6.4 − (2.4)2 = 0.64
▶ What is the intuition behind the Variance formula? Ans: It gives you population variance

without using the population.
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Scatter Plot, Covariance and Correlation

▶ Now we can start ....
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Scatter Plot, Covariance and Correlation

▶ Suppose we have following data of 150 students at East West University (EWU) regarding
their family income categories and whether they tried to go to abroad for higher studies or
not. For now assume this is the population data, so we have all 150 students in the population

Family Income Categories (X)
Difficult Middle Higher Middle Rich Total

Tried 18 13 22 24 77
Not Tried 22 25 16 10 73
Total 40 38 38 34 150

▶ From here we can easily calculate the joint probability table,
Family Income Categories (X)

Difficult Middle Higher Middle Rich Total
Tried 0.12 0.08 0.15 0.16 0.51
Not Tried 0.15 0.17 0.10 0.07 0.49
Total 0.27 0.25 0.25 0.23 1
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Scatter Plot, Covariance and Correlation

▶ Here we can X represents Family Income Categories, 1 for Difficult, 2 for Middle, 3 for
Higher Middle and 4 for Rich and Y represents tried or not, 1 means the student tried 0
means the student didn’t try

▶ Now we can write following table which is actually called the joint probability distribution
of random variables X and Y ,

Family Income Categories (X)
Tried/Not Tried (Y ) 1 2 3 4 Total
1 0.12 0.08 0.15 0.16 0.51
0 0.15 0.17 0.10 0.07 0.49
Total 0.27 0.25 0.25 0.23 1
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Scatter Plot, Covariance and Correlation

▶ From joint probability distribution we can derive different type of probabilities and
probability distributions, also Expectation and Variance.

▶ Joint Probability P(X = x ,Y = y) :

For example P(X = 1,Y = 0) = 0.15 means if we randomly select a student from the population of
150, then there is a 15% chance that he/she is from Difficult income category and she didn’t try to
go abroad for higher studies. And all the joint probabilities will sum to 1, i.e.
∑x ∑y P(X = x ,Y = y) = 1 and the 8 joint probabilities together is called joint probability
distribution of X and Y . We will often use f (x , y) to denote the joint probability distribution.

f (x , y)
x = 1 x = 2 x = 3 x = 4

y = 1 0.12 0.08 0.15 0.16
y = 0 0.15 0.17 0.10 0.07
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Scatter Plot, Covariance and Correlation

▶ Marginal Probability P(X = x):

This is the probability of X taking a specific value, regardless of the value of Y . For example,
P(X = 1) = 0.27 means if we randomly select a student from the population of 150, then there is a
27% chance that he/she is from Difficult income category. Similarly, we can find P(X = 2) = 0.25,
P(X = 3) = 0.25, and P(X = 4) = 0.23. From here we can calculate the marginal probability
distribution of X as follows.

P(X = 1) = 0.27, P(X = 2) = 0.25, P(X = 3) = 0.25, P(X = 4) = 0.23

We will use fX (x) to denote the marginal probability distribution of X ,

Departments (x) Probability fX (x)
1 0.27
2 0.25
3 0.25
4 0.23

▶ And using the marginal probability distribution, we can calculate Marginal Expectation E(X ) and
Marginal Variance V(X ) (please do it as an exercise).
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Scatter Plot, Covariance and Correlation

▶ Marginal Probability P(Y = y):

This is the probability of Y taking a specific value, regardless of the value of X . For example,
P(Y = 1) = 0.51 means if we randomly select a student from the population of 150, then there is a
51% chance that he/she tried to go abroad for higher studies. Similarly, we can find
P(Y = 0) = 0.49. From here we can calculate the marginal probability distribution of Y as follows,

P(Y = 1) = 0.51, P(Y = 0) = 0.49

We will use fY (y) to denote the marginal probability distribution of Y ,
Tried/Not Tried (y) Probability fY (y)

1 0.51
0 0.49

▶ And using the marginal probability distribution, we can calculate Marginal Expectation E(Y ) and
Marginal Variance V(Y ) (please do it as an exercise).

12 / 122



Scatter Plot, Covariance and Correlation

▶ Conditional Probability P(Y = y | X = x):

This is something new, this is the probability of Y taking a specific value given that X takes a
specific value. For example, P(Y = 1 | X = 1) means if we randomly select a student from the
population of 150 and we know she is from Difficult income category (so we are fixing only for
Difficult income category), then what is the probability that he/she tried to go abroad for higher
studies. The calculation of conditional probability is straightforward, we can use the joint
probability and marginal probability as follows,

P(Y = 1 | X = 1) = P(X = 1,Y = 1)
P(X = 1) =

0.12
0.27 ≈ 0.4444

Or using the f (x , y) and fX (x) we can write it as (the symbol becomes complicated but the
calculation is easy)

fY |X (y | X = 1) = fY |X (1 | X = 1) = f (x , y)
fX (x)

=
f (1, 1)
fX (1)

=
0.12
0.27 ≈ 0.4

▶ In fact conditioning on X = 1, we can calculate both Y = 1 (which we did) and Y = 0 as follows,
and then write the conditional distribution of Y given X = 1, in a table we can write as follows,

Tried/Not Tried (y) Probability fY |X (y | X = 1)
1 0.4
0 0.6

▶ Note this is conditional distribution of Y given X = 1, this is different from marginal distribution of
Y which is fY (y), which we calculated earlier. And conditional distribution is a distribution so this
will sum to 1.
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Scatter Plot, Covariance and Correlation

▶ Now we can also Conditional Expectation E(Y | X = 1) as follows,

E(Y | X = 1) = ∑
y

y · fY |X (y | X = 1)

= 1 · 0.4 + 0 · 0.6 = 0.4
▶ And Conditional Variance V(Y | X = 1) as follows,

V(Y | X = 1) = E[Y − E(Y | X = 1)]2

= (1 − 0.4)2 · 0.4 + (0 − 0.4)2 · 0.6 = 0.24

▶ In this case you can think about conditional expectation as a population average of all Y
values given X = x (for example X = 1). Similat interpretation can be given for conditional
variance.

▶ From this joint distribution we can calculate 4 conditional distribution of Y , given four
possible values of X , i.e. X = 1, 2, 3, 4. This will give us 4 conditional mean and 4
conditional variance.

▶ Similatly we can also calculate two conditional distributions of X given Y = 1 and Y = 0,
and then calculate conditional expectation and conditional variance.
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Scatter Plot, Covariance and Correlation

▶ Here an example plot for marginal PMF of X

1 2 3 4
0

0.1

0.2

0.3

Departments (X)

Pr
ob

ab
ili

ty

PMF of X , fX (x)

▶ Here is an example olot for joint PMF of X and Y , where X is Departments and Y is Tried
or Not Tried.
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Scatter Plot, Covariance and Correlation

Figure 1: Figure above shows a sketch of what the joint PMF of two discrete random variables
could look like. The height of a vertical bar at (x , y) represents the probability P(X = x ,Y = y) or
f (x , y). For the joint PMF to be valid, the total height of the vertical bars must be 1 .
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Scatter Plot, Covariance and Correlation

▶ We only looked at discrete random variables, but we can also extend this to continuous
random variables. For example, if X and Y are two continuous random variables, then we
can define joint probability density function (PDF) f (x , y) such that

P(X ∈ A,Y ∈ B) =
∫∫

A×B
f (x , y) dx dy

▶ The things become more complicated when we have continuous random variables, but the
idea is similar. We can define marginal PDF fX (x) and fY (y), and then we can define
conditional PDF fY |X (y | x) as follows,

▶ Here is an example of bi-variate Normal or jointly Normal,
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Scatter Plot, Covariance and Correlation

▶ The functions looks a bit more scary, sorry,

fXY (x , y) = 1
2πσX σY

√
1 − ρ2

×

e

{
− 1

2(1−ρ2)

[( x−µX
σX

)
2+

( y−µY
σY

)
2−2ρ

(x−µX )(y−µY )
σX σY

]}
▶ Here we have two random variables, X and Y which are jointly normal. Now we have 5

parameters, µX , µY , σX , σY and ρ. here µX and µY are the means of X and Y , σX and σY
are the standard deviations of X and Y , and ρ is the correlation between X and Y .
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Scatter Plot, Covariance and Correlation

▶ For continuous random variables we can also define marginal PDF fX (x) and fY (y), and
then we can define conditional PDF fY |X (y | x) with integration, I won’t go to details here
but impotant is here everything will be a function of x and y . I give one example below

▶ Joint PDF of X and Y is given by

f (x , y) = x +
3
2 y2, 0 < x < 1, 0 < y < 1

▶ In this case from this joint just by integrating we can find marginal PDF of X and Y as
follows,

fX (x) = x +
1
2

fY (y) = 3
2 y2

▶ We can also calculate conditional PDF of Y given X as follows,

fY |X (y | X = x) = f (x , y)
fX (x)

=
x + 3

2 y2

x + 1
2

=
2x + 3y2

2x + 1
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Scatter Plot, Covariance and Correlation

▶ Notice for each fixed x , this is a density function of y , so this is a conditional PDF of Y
given X = x . For example, if x = 1

2 , then we can write the conditional PDF of Y given
X = 1

2 as follows,

fY |X (y | X =
1
2 ) =

2 · 1
2 + 3y2

2 · 1
2 + 1

=
1 + 3y2

2

▶ If we use fY |X (y | X = x) = 2x+3y2
2x+1 and calculate expectation of Y given X = x , then we

can write as follows,

E(Y | X = x) = 1
2(2x + 1)

(
x +

3
4

)
▶ Note that conditional expectation becomes a function of X . This is called conditional

expectation function. How do we visualize this, there is a nice way to visualize this in
scatter plot. We will come back to this later, however important is conditional expectation
is a function of X , so we can write E(Y | X ) = g(X ), where g(X ) is a function of X .
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Scatter Plot, Covariance and Correlation

▶ Before we end this section we will learn about two other quantities, which are very
important in statistics, these are Covariance and Correlation. Probably you already know the
sample covariance and sample correlation, but here we will learn about population
covariance and population correlation. These two quantities will help us to understand the
relationship between two random variables.

▶ Here is the formula or definition
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Scatter Plot, Covariance and Correlation

Definition 3.1:Covariance and Correlation)

The population covariance between two random variables X and Y is

Cov(X ,Y ) = E [(X − E(X )) (Y − E(Y ))] = E [(X − µX ) (Y − µY )]

And the Correlation between two random variables X and Y is

ρX ,Y = Cor(X ,Y ) =
Cov(X ,Y )(√

Var(X )
) (√

Var(Y )
) =

Cov(X ,Y )

σX × σY

▶ where µX and µY are the marginal Expected values of X and Y , and σX and σY are the
standard deviations of X and Y .

▶ What does covariance mean? If covariance is positive, then X and Y are positively
associated or related, which roughly means if X increases, then Y also increases. If covariance
is negative, then X and Y are negatively associated / related, which roughly means if X
increases, then Y decreases. If covariance is close to 0, then there is almost no relationship
between X and Y .

▶ Now What does correlation mean? Correlation is a normalized version of covariance,
which means it gives a value between −1 and 1 (we will always have −1 ≤ ρX ,Y ≤ 1). So
it’s a better measure of association than covariance, since we can understand the strength
of association between X and Y from correlation.
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Scatter Plot, Covariance and Correlation

▶ In particular if ρX ,Y is close to +1, then X and Y are positively correlated, which means if X
increases, then Y also increases. If ρX ,Y is close to −1, then X and Y are perfectly
negatively correlated, which means if X increases, then Y decreases. If ρX ,Y = 0, then
there is no linear relationship between X and Y .
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Scatter Plot, Covariance and Correlation

▶ Let’s calculate covariance and correlation for our example of EWU students. We can use
the joint distribution of X and Y that we calculated earlier, and then we can calculate the
covariance and correlation as follows,

▶ But before that there is also a shortcut formula for covariance, which is (this is easy to
derive, please do it as an exercise)

Cov(X ,Y ) = E(XY )− E(X ) · E(Y )

▶ Here for E(XY ), we need the joint distribution of X and Y , which we can calculate as
follows,

E(XY ) = ∑
x

∑
y

x · y · f (x , y)

= 1 · 1 · 0.12 + 1 · 0 · 0.15 + 2 · 1 · 0.08 + 2 · 0 · 0.17 + 3 · 1 · 0.15 + 3 · 0 · 0.10
+ 4 · 1 · 0.16 + 4 · 0 · 0.07
= 0.12 + 0 + 0.16 + 0 + 0.45 + 0 + 0.64 + 0
= 2.95

▶ We need to calculate E(X ) and E(Y ), which we can calculate from the marginal
distributions of X and Y that we calculated earlier,

E(X ) = 1 · 0.27 + 2 · 0.25 + 3 · 0.25 + 4 · 0.23 = 2.45
E(Y ) = 1 · 0.51 + 0 · 0.49 = 0.51
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Scatter Plot, Covariance and Correlation

▶ Now we can calculate covariance as follows,

Cov(X ,Y ) = E(XY )− E(X ) · E(Y )

= 2.95 − 2.45 · 0.51
= 2.95 − 1.25 = 1.70

▶ Now calculate the standard deviations of X and Y , which we can calculate from the
marginal distributions of X and Y that we calculated earlier and then calculate correlation
(do it as an exercise),

▶ Since Covariance is positive, we can say X and Y are positively associated, which means if
a student is from higher income categories, then he/she is more likely to try to go abroad
for higher studies.

▶ How strong is the relationship between Y and X? We can use the correlation between Y
and X to measure this (please do it as an exercise).

▶ What we learned is population covariance and coorelation. There is also sample covariance
and sample correlation from a sample data, the formulas are,

sX ,Y =
1

n − 1

n
∑
i=1

(xi − x̄)(yi − ȳ)

rX ,Y =
sX ,Y
sX sY

▶ where sX ,Y is the sample covariance, rX ,Y is the sample correlation, sX and sY are the
sample standard deviations of X and Y , and x̄ and ȳ are the sample means of X and Y .
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Scatter Plot, Covariance and Correlation

▶ There is a connection of covariance and correlation with scatter plot, what is a scatter
plot? A scatter plot is a graphical representation of the relationship between two variables,
where each point represents an observation in the dataset. The horizontal axis represents
one variable (say X) and the vertical axis represents another variable (say Y ).

▶ For example here suppose we collected a dataset from 10 restaurants asking about their
student population size (what is approximate number of students live close to them) and
monthly sales. We can think about the population size as xi and monthly sales as y. Here is
the data,

Restaurant SPop (in 1000s) - xi Msales (in 1000 BDT) - yi
1 2 58
2 6 105
3 8 88
4 8 118
5 12 117
6 16 137
7 20 157
8 20 169
9 22 149
10 26 202

Table 1: Two Variable Data for SLR, here Independent Variable is SPop and Dependent Variable is
Msales
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Scatter Plot, Covariance and Correlation

▶ With this sample we can plot a scatter plot, where we can see the relationship between xi
and yi as follows,
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Scatter Plot, Covariance and Correlation

▶ Roughly this shows that there is a positive relationship between xi and yi , which means if
the student population size increases, then the monthly sales seems to increase.

▶ We can now calculate the covariance and correlation between X and Y as follows, which
should be also positive, since we can see the positive relationship in the scatter plot.

sX ,Y =
1

n − 1

n
∑
i=1

(xi − x̄)(yi − ȳ) = 315.5

▶ Which doesn’t give us how strong is the relationship. We can also calculate the correlation,
which is

rX ,Y =
sX ,Y
sX sY

= 0.95

▶ Which shows the strong relationship between X and Y , which is also visible in the scatter
plot.

▶ So scatterplot is a graphical representation of the relationship between two variables, and
covariance and correlation are numerical measures of the strength and direction of that
relationship.

▶ You should always remember the following pciture,
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Scatter Plot, Covariance and Correlation
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Problem of Regression and CEF

31 / 122



Problem of Regression and CEF

Best Function to Predict
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Best Function to Predict
Conditional Expectation Function

▶ Suppose we have a data set of a company’s sales and money spent on TV, radio and
newspaper advertisement. Here is how the data looks like in studio

▶ It shows we have 200 observations (so sample size is 200), 20 of them is shown and we
have 4 variables.

▶ The units are an important part of the data “Sales” variable is in 1000 unit and other
variables are in 1000$.

▶ Now suppose the company wants to predict the sales based on the other three variables.
▶ Doing some descriptive statistics is often a good idea before we go for inferential statistics.
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Best Function to Predict
Conditional Expectation Function

▶ In this case we can see following scatter plots which shows some association between sales
and each of the variables (what about causality?). Recall scatter plot is a graphical method
to see association between two variables (what are some numerical methods to check
association? Ans: Covariance and Correlation )

▶ We will see how to do scatter plots in our lab session.
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Best Function to Predict
Conditional Expectation Function

▶ Back to predicition problem.
▶ Here Sales is called the response or target that we wish to predict with the help of TV, Radio

and Newspaper.
▶ The target variable is often represented by Y and other variables that we will use to predict

are often represented by X (if we have single variable) or X1,X2,X3, . . . , (if we have
multiple variables).

▶ Sometimes we also call Y as dependent variable and X or X1,X2,X3 as independent variables
or explanatory variables or regressors or features or predictors or covariates.
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Best Function to Predict
Conditional Expectation Function

▶ Question: How do we solve the prediction problem? Answer is we need a function
f (X1,X2,X3), which is following,

f (X1,X2,X3) = 3 + 4X1 + 5X2 + 6X3

▶ Assuming the function does a good job for our predicition problem. Then we use this
function to predict Y

▶ For example if we know X1 = 10, X2 = 20 and X3 = 30, then we can predict the sales as
follows,

predicted Y = f (X1,X2,X3) = 3 + 4(10) + 5(20) + 6(30)
= 3 + 40 + 100 + 180
= 323

▶ Of course our prediction will not be 100% accurate since we may have measurement errors
or leave other variables in our model, and there will be a True Sales or True Y at this
combination of X1,X2,X3, which we will not be able to predict exactly. So we will have
some error in our prediction.

▶ We will denote the error or residual or prediction error with ϵ, and we can write it as,

ϵ = Y − f (X1,X2,X3)
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Best Function to Predict
Conditional Expectation Function

▶ In this chapter our goal is to find such function f that will help us to predict Y as
accurately as possible ... this is called the regression problem.

▶ From now first we will focus on a single variable case which is called simple linear
regression problem so we will assume X is a single variable, say TV expenditure, and then we
will extend it to multiple variables later. So now we can write the model as,

▶ Note that if we have only one variable, then we can write the function as,

predictedY = f (X ) = 3 + 4X
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Best Function to Predict
Conditional Expectation Function

▶ Now the question is what is the best function f that we can use to predict Y ?
▶ Here we need to be clear about what do we mean by “best”?.
▶ Here we will assume “best” means we mean minimizing the mean squared error (in short

MSE).
▶ MSE is defined as

E
[
(Y − f (X )) 2]

▶ So now we can rephrase the question -

“is there a function f that will minimize MSE or E
[
(Y − f (X )) 2], if YES, then what is the

function?”

▶ The question can be also stated mathematically as an optimization problem,

minimize
f

E
[
(Y − f (X )) 2]
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Best Function to Predict
Conditional Expectation Function

▶ I won’t show the calculation here mathematically (but you can look into Hansen (2022) if
you want to see the proof), but the answer is YES, there is a function and the function is
the conditional expectation function, which we write as,

f (X ) = E(Y | X )

▶ Or when we write as a function of X , we can write as

f (x) = E(Y | X = x)
▶ You already know conditional expectation (which is the average of Y values given a fixed

X), the question is what is conditional expectation function?
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Best Function to Predict
Conditional Expectation Function

▶ The idea is this is a function of X , where when we plug the value of X , we get the
conditional expectation of Y given that value of X . For example it could be when both X
(single variable) and Y are continuous random variables, then the conditional expectation
function is

f (x) = 2 + 3x2

▶ Here is how we can visualize this function in a scatterplot, suppose we have population of
Y and X values, maybe lots of values, ....

Figure 2: This is a scatter plot of population data of Y and X . The red line is the conditional
expectation function, which is a function of X , at 4 the dot shows the conditional expectation of Y
given X = 4, which is E(Y | X = 4)
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Best Function to Predict
Conditional Expectation Function

▶ We can calculate the conditional expectation function for all X values, and then we can
connect the points which gives us the conditional expectation function which is the red line
in the picture and which is going to be a function of x , which we can write with f (x).
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Best Function to Predict
Conditional Expectation Function

▶ Why CEF could be useful?
▶ Two key reasons

▶ Prediction - With a good f we can make predictions of Y at new points X = x . In this case we are
not interested to know the true f per se, but if we can do good predictions we are happy.

▶ Inference regarding the function and related objects - Prediction is one kind of inference, but there is
another kind, where we want to infer about the true CEF. Maybe we are interested to understand
the true nature of the relationships between the response and predictors, or which predictors are
important in explaining the response. Sometimes this is more difficult and often we have no hope
without imposing strong assumptions.
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Understanding CEF and CEF ϵ
CEF and CEF Error - Mean and Variance

▶ We need to mention some important points regarding conditional expectation function and
the CEF error ϵ.

▶ Conditional expectation always follow following properties,

LIE: E (E(Y |X )) = E(Y )

▶ This is called law of iterated expectation (LIE), which says the average of conditional
expectation is equal to unconditional expectation. There are other properties of conditional
expectation, but we will not go into details here.

▶ Now we come to Error, recall Error is defined as

ϵ = Y − f (X ) = Y − E(Y |X )

▶ We can easily see that

E(ϵ|X ) = E(Y |X )− E(Y |X ) = 0
▶ What does this mean visually? Consider following population data of ϵ
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Understanding CEF and CEF ϵ
CEF and CEF Error - Mean and Variance

▶ Here we plotted x values on the x-axis and ϵ values on the y -axis. So for each x value, we
have many ϵ values and the figure shows if we take average of these ϵ values at every x ,
then the average will be 0 at every x .

▶ If E(ϵ|X = x) = 0, then with LIE we know that E(ϵ) = 0 (this is an application of law of
iterated expectation)

▶ We can also think about conditional variance of Y which is V(Y | X = x) and conditional
variance of ϵ which is V(ϵ | X = x). Using the definition of variance we can show that

V(ϵ | X = x) = V(Y | X = x) = E((Y − E(Y | X = x))2 | X = x)
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Understanding CEF and CEF ϵ
CEF and CEF Error - Mean and Variance

▶ Which means conditional variance of ϵ is equal to conditional variance of Y given X = x .
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Understanding CEF and CEF ϵ
CEF and CEF Error - Mean and Variance

▶ So what is conditional variance? It means variance of Y , conditional on x values. In the
following we plotted two population data where the red line is the CEF function.

▶ One the left the variance of Y seems to be constant with x values, so this means V(Y |X )
or V(ϵ|X ) is constant. This is called homoskedasticity!

▶ On the right the variance of Y is changing with x values (in particular increasing), so this
means V(ϵ|X ) is NOT constant, it is called heteroskedasticity!

▶ We can also show that unconditional variance are also equal V(ϵ) = V(Y )

▶ Now again consider two population data, for both V(ϵ|X = x) is constant. But on the left
V(ϵ|X = x) is high and on the right V(ϵ|X = x) is low
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Understanding CEF and CEF ϵ
CEF and CEF Error - Mean and Variance

▶ It’s important to note that, if the conditional variance is high then unconditional variance
V(ϵ) is also high.

▶ If we have homoskedasticity for ϵ, which means constant conditional variance of ϵ, then it
is possible to show that V(ϵ) = V(ϵ|X = x)
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Simple Linear Regression Model (SLR)
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Simple Linear Regression Model (SLR)

1. The Problem of Estimation
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Simple Linear Regression
The Problem of Estimation (method of least squares)

▶ The method we will learn first is known as Linear Regression Model. In particular we will talk
about Simple Linear Regression Model or in short SLR in this chapter. According to Simple
Linear Regression Model we will assume the unknown CEF is linear in parameters (slope and
intercept) and also linear in X and we have just one feature X .

▶ Let’s exaplain this in detail.

51 / 122



Simple Linear Regression
The Problem of Estimation (method of least squares)

▶ It’s helpful to always keep a data example at the back of your mind, so we will use the
following example. Assume we have only one independent variable which is Student
Population (SPop) in 1000s and a depednent variable which is Monthly Sales (Msales) in
1000 BDT. We want to predict Msales based on SPop.

▶ We will write the data from the independent variable with xi , so x1, x2, . . . , xn and
dependent variable or response variable with yi , so y1, y2, . . . , yn, so a pair with (xi , yi ) is a
data point. So we can write the data as (x1, y1), (x2, y2), . . . , (xn, yn) where n is the sample
size.

Restaurant SPop (in 1000s) - xi Msales (in 1000 BDT) - yi
1 2 58
2 6 105
3 8 88
4 8 118
5 12 117
6 16 137
7 20 157
8 20 169
9 22 149
10 26 202

Table 2: Two Variable Data for SLR, here Independent Variable is SPop and Dependent Variable is
Msales

▶ This was one sample.... let’s see what we assume in the population ....
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Simple Linear Regression
The Problem of Estimation (method of least squares)

▶ In the population we assume we have

E(Yi |Xi = x) = f (xi ) = β0 + β1x
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Simple Linear Regression
The Problem of Estimation (method of least squares)

▶ This actually means, our true CEF looks like the red linear line β0 is the intercept and β1 is
the slope (Notice here we are assuming following is the scatter plot of some population
data)

Figure 3: Scatter plot of the Population Data (gray points) the Conditional Expectation Function
(red line)
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Simple Linear Regression
The Problem of Estimation (method of least squares)

▶ Now, if we want use the best prediction function to predict Y for any given values of x our
job is to only get the values of unknown β0 and β1, then we can use CEF to predict Y for any
values of X . It’s obvious that just from the sample we can never get β0 and β1, since these
are population quantities.... so what do we do? We try to guess the values from a sample
data. You should immediately recognize this an estimation problem.
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Simple Linear Regression
The Problem of Estimation (method of least squares)

▶ Essentially our goal is to find the following red line - which can be called the best fitted linear
line

Figure 4: Scatterplot of Sales Vs. Student Population
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Simple Linear Regression
The Problem of Estimation (method of least squares)

▶ The equation of the line will be something like this

ŷi = β̂0 + β̂1xi

▶ Here the ŷi is used for predicted value and β̂0 and β̂1 are the unknown intercept and slope of
the linear line ... note that if we know the intercept and slope we have our magical
equation to predict ...

▶ Following command will give us the result

▶ You can also get the similar output in Excel, we will see this in class.
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Simple Linear Regression
The Problem of Estimation (method of least squares)

code: SLR results for the Armands data

# set the directory
setwd("...")

# turn off scientific printing
options(scipen = 100)

# get the data
Fast_Food_Data_SLR <- read_excel("Fast_Food_Data_SLR.xlsx")

# fit the model with the data
model <- lm(Msales ~ Spop, data = Fast_Food_Data_SLR)
summary(model)

▶ You should see following output,
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Simple Linear Regression
The Problem of Estimation (method of least squares)

Call:
lm(formula = Msales ~ Spop, data = Fast_Food_Data_SLR)

Residuals:
Min 1Q Median 3Q Max

-21.00 -9.75 -3.00 11.25 18.00

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 60.0000 9.2260 6.503 0.000187 ***
Spop 5.0000 0.5803 8.617 0.0000255 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 13.83 on 8 degrees of freedom
Multiple R-squared: 0.9027, Adjusted R-squared: 0.8906
F-statistic: 74.25 on 1 and 8 DF, p-value: 0.00002549

▶ Here intercept β̂0 = 60 and slope β̂1 = 5
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Simple Linear Regression
The Problem of Estimation (method of least squares)

▶ So finally we can write the equation of the best fitted line,

ŷi = β̂0 + β̂1xi = 60 + 5xi

▶ We can plot the fitted line with the data, this is the red line you saw in the figure. In
after plotting the scatter plot, you can plot this line using the abline() function.
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Simple Linear Regression Model (SLR)

2. Interpretations
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Simple Linear Regression
Interpreting The Coefficients

▶ Now let’s interpret the coefficients. Recall the estimated equation is

ŷi = 60 + 5 xi

▶ We can also write the equation with the original variable names, rather than x and y ,

̂Monthly Sales = 60 + (5 × Student Population )

▶ The “hat” symbol is for predicted values (note it’s not actual yi )

▶ Let’s see the interpretations,
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Simple Linear Regression
Interpreting The Coefficients

Interpretation of β̂1 = 5

▶ The slope co-efficient β̂1 is the predicted change in the dependent variable (here monthly sales)
for a unit change in the independent variable (here student population). So we can say - if
the student population is increased by 1000, then approximately monthly sales is predicted to
increase on average by 5000 taka. Or we can also say an additional increase of 1000 student
population is associated with approximately 5000 taka of additional sales on average.

▶ Notice for the interpretation the units are very important. Here the student population is in
1000s, and the data of monthly sales is in 1000 taka, so we need to be careful when
interpreting the coefficients. Also it must not be a causal interpretation, we cannot say -
change in student population causes change in sales... so careful with the wordings...
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Simple Linear Regression
Interpreting The Coefficients

▶ Interpretation of intercept β̂0 = 60

▶ if the student population is 0, then the predicted sales on average is 60, 000 taka. This kind
of interpretation for intercept often doesn’t make any sense unless we come up with a story,
so perhaps we can say - if there is no student population, then the sales is still 60, 000 taka, this
might be because of some other factors.
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Simple Linear Regression Model (SLR)

3. The Least Squares Problem
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Simple Linear Regression
The Least Squares Problem

▶ Now a question is - Why the name best fitted line, what is the meaning of “best” or how did we
calculate 5 and 60? Let’s explain this,

▶ Essentially here “best” means here - it’s a line which has least error in some sense, in
particular, here we are minimizing the sum of squared errors or in short SSE in the sample. So
this line has the least SSE. What is SSE?

▶ First let’s explain what is the error here, the idea of the error in this case is,

error = actual − predicted

▶ So if ei is the error for the ith data point, then using our notation this means

ei = yi − ŷi

▶ and since our predicted value is ŷi = β̂0 + β̂1xi , this means

ei = yi − ŷi = yi −
(

β̂0 + β̂1xi
)

▶ the squared error is

e2
i = (yi − ŷi )

2 =
(

yi −
(

β̂0 + β̂1xi
))

2
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Simple Linear Regression
The Least Squares Problem

▶ And sum of squared errors, in short SSE is

SSE =
n
∑
i=1

e2
i =

n
∑
i=1

[
yi −

(
β̂0 + β̂1xi

)]
2

▶ So no we can write the problem clearly, our problem is we need to find a line which minimizes
SSE, in particular we have the following minimization problem,

minimize
β̂0,β̂1

n
∑
i=1

[
yi −

(
β̂0 + β̂1xi

)]
2

▶ In words this means, we need to find the β̂0 and β̂1 such that the sum of squared errors is
minimized.
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Simple Linear Regression
The Least Squares Problem

▶ I will skip the details here (some details are in the Appendix, if you have taken Mat 211,
then you can understand it easily, otherwise you will see more in the Econometrics
course),.... but if we solve the minimization problem we get,

β̂1 =
∑n

i=1 (xi − x̄) (yi − ȳ)
∑n

i=1 (xi − x̄) 2 and β̂0 = ȳ − β̂1x̄

▶ There is another way we can write β̂1,which is using he sample covariance and variance
formulas, recall

sx ,y =
∑ (xi − x̄) (yi − ȳ)

n − 1 sample covariance (1)

s2
x =

∑ (xi − x̄) 2

n − 1 sample variance (2)

where s2
X is the sample variance of X , so we can write β̂1 =

sx ,y

s2
X
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Simple Linear Regression
The Least Squares Problem

▶ This method is famously known as method of least-squares and the fitted line is called the
least squares line (often also called estimated regression line also sample regression function).
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Simple Linear Regression Model (SLR)

4. In-Sample and Out-of-Sample Predictions
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Simple Linear Regression
In-sample and Out-of-sample prediction

▶ Using the estimated regression line we can also get in-sample predicted values, these are also
sometimes called fitted values. These are essentially predicted values for the sample data
points.... Manually we can calculate the fitted values using the estimated regression
equation, ŷi = 60 + (5 × xi ).

Spop in 1000s (xi ) Msales (in 1000 taka) (yi ) Fitted Values (in 1000 taka) (ŷi )
1 2 58 60+ (5 × 2) = 70
2 6 105 60+ (5 × 6) = 90
3 8 88 60+ (5 × 8) = 100
4 8 118 60+ (5 × 8) = 100
5 12 117 60+ (5 × 12) = 120
6 16 137 60+ (5 × 16) = 140
7 20 157 60+ (5 × 20) = 160
8 20 169 60+ (5 × 20) = 160
9 22 149 60+ (5 × 22) = 170

10 26 202 60+ (5 × 26) = 190

▶ In you can get the fitted values with the command fitted(model). Note that these
fitted values values are within the sample data points, so this is why we call this in-sample
prediction.
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Simple Linear Regression
In-sample and Out-of-sample prediction

▶ Note that in sample prediction may or may not be equal to the yi from the data. In the
next section we will learn about a quantity - which is called R-squared or in short R2, which
is a measure about how good is our in-sample prediction, or how good the line fits the data.

▶ With the same equation we can also do out-of-sample prediction, which was our initial goal.

▶ For example we can predict when the student population is 30 thousands (notice 30 is not
in the sample, nor in the range). Recall this was initial goal .... If we do this we get
60 + (5 × 30) = 210 so, 210, 000 taka sales. So this is a predicted value for which we don’t
know yi .
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Simple Linear Regression
In-sample and Out-of-sample prediction

Be Careful With Perfect In-Sample Predictions

▶ We need to be careful regarding very good in-sample prediction. A good in-sample prediction
does not automatically mean we will get a very good out-of-sample prediction. The reason is - we
already used the data to fit the line, meaning, the line is such that it fits the data points very well,
this is by construction. So of course we will get a very good in-sample prediction.

▶ There is a way we can evaluate out-of-sample prediction, using training and test sample. The
idea is we randomly separate some data as a test data, which we don’t use to get the line
and then we get our best fitted line, do prediction and then we compare the predicted
values with the actual values.
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Simple Linear Regression
In-sample and Out-of-sample prediction

▶ You will do another example in your homework ....
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Assessing the Fit - R2 and RSE
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Assessing the Fit - R2 and RSE

1. Goodness of fit - R2
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Assessing the Fit
Goodness of Fit or R2

▶ Now we will learn two summary measures that tells how good the line fits the data
▶ Coefficient of Determination or in short R2

▶ Residual Standard Error or in short RSE

▶ Let’s start with R2. The basic formula is,

R2 =
SSR
SST

▶ where

SST =
n
∑
i=1

(yi − ȳ) 2,Total Sum of Squares

SSE =
n
∑
i=1

(yi − ŷi )
2 =

n
∑
i=1

e2
i ,Error Sum of Squares or Sum of Squared Errors

SSR =
n
∑
i=1

(ŷi − ȳ) 2,Regression Sum of Squares

▶ where ȳ is the sample mean

ȳ =
1
n

n
∑
i=1

yi
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Assessing the Fit
Goodness of Fit or R2

Question is - what does this formula mean? To understand this let’s decompose yi − ȳ

yi − ȳ = (yi − ŷi ) + (ŷi − ȳ)
We can visually understand this in the following picture, below the black horizontal line is
for ȳ

Figure 5: On the left we have yi − ȳ , then on the middle we have (yi − ŷi ) and on the right we have
(ŷi − ȳ)
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Assessing the Fit
Goodness of Fit or R2

▶ Now we can take squares and sum on both sides of the decomposition and we get (the
product term becomes 0)

n
∑
i=1

(yi − ȳ) 2

︸ ︷︷ ︸
SST

=
n
∑
i=1

(yi − ŷi )
2

︸ ︷︷ ︸
SSE

+
n
∑
i=1

(ŷi − ȳ) 2

︸ ︷︷ ︸
SSR

▶ We mentioned SST stands for Total Sum of Squares. This is easy to explain. Recall, the total
variability of yi can be explained by the sample variance ∑n

i=1(yi−ȳ)2
n−1 . And for SST we have

the numerator of the sample variance of yi . So SST measures the total variability of yi (but
it’s not exactly variance).

▶ We already know SSE, which is ∑n
i=1 (yi − ŷi ) 2. This is the sum of squared errors, or the

Error Sum of Squares which shows how much variability of error remains after we fitted the
line.

▶ And the term ∑n
i=1 (ŷi − ȳ) 2 is called Regression Sum of Squares or SSR in short, which

shows how much variability of yi is explained by the regression or can be explained by xi .
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Assessing the Fit
Goodness of Fit or R2

▶ So this means R2 tells “out of the total variation of y how much we can explain by regression”.
▶ Also note R2 is a ratio of explained sum of squares and total sum of squares. So this means

we will always have 0 ≤ R2 ≤ 1 (in other words the value of R2 will always lie between 0
and 1).

▶ So high R2 means the least-squares line fits very well with the data. Here are some
examples of high R2 with a different data sets .... please try to understand carefully,
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Assessing the Fit
Goodness of Fit or R2

▶ The black dots are the sample points, the red line is the fitted line. Here are the regression
line perfectly fits the data. For this data set if we calculate R2 we will get 0.99. It’s a
different data set, not our Msales-Spop data (so don’t get confused)
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Assessing the Fit
Goodness of Fit or R2

▶ Here is another data set, here obviously the fit is not good, if we calculate the R2, in this
case we get R2 = 0.02, which is almost close to 0.
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Assessing the Fit
Goodness of Fit or R2

▶ So the above discussion shows R2 tells us how good is our least-squares line or the regression
line fits the data. High R2 means the fit is quite good, on the other hand low R2 means fit
is not that good with the data.

▶ There are different names of R2, one name is Coefficient of Determination, sometimes we also
call it Goodness of Fit.

▶ In our Monthly Sales and Student Population, R2 is 0.9027, which means 90% of the
variability in sales can be explained by the student population. So this is a good fit.

▶ Again be careful about out of sample prediction: Probably you have already understood that
high R2 does not automatically mean that we did a good job with our prediction problem for any
data, since this is an in-sample measure ....But still we can say high R2 is something that is
generally desirable.
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Simple Linear Regression
Issues with Different Terminologies

Issues with SST, SSR, SSE short forms - BE CAREFUL if you read different books

▶ If you read Anderson, Sweeney, Williams, Camm, Cochran, Fry and Ohlmann (2020) or
Newbold, Carlson and Thorne (2020) you will see the words SST (Total Sum of Squares),
SSR (Regression Sum of Squares) and SSE (Sum of Squared Errors) or (Error Sum of
Squares), we used this.

▶ If you read James, Witten, Hastie and Tibshirani (2023), you will see the words like TSS
(Total Sum of Squares), RSS (Residual Sum of Squares), and ESS (Explained Sum of
Squares)

▶ There
▶ TSS is same as SST ,
▶ ESS (Explained Sum of Squares) is same as SSR
▶ RSS (Residual Sum of Squares) is same as SSE.

▶ So again, one option is to use TSS, RSS and ESS
▶ The other option is to use SST, SSR, SSE.
▶ We will use SST, SSR and SSE like Anderson, Sweeney, Williams, Camm, Cochran, Fry and

Ohlmann (2020), because I think this is more common.
▶ Suppose we use TSS, RSS and ESS, then we can write R2 as
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Assessing the Fit - R2 and RSE

2. Residual Standard Error or RSE
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Assessing the Fit
Residual Standard Error or RSE or Standard Error of the Estimate

▶ Another useful measure to assess how good is the fit, is the Mean Squared Error or the
square root of this quantity which is called Residual Standard Error or Standard Error of the
Estimate. The Mean Squared Error is defined as

MSE =
SSE
n − 2 =

1
n − 2

n
∑
i=1

e2
i

▶ Here n − 2 comes since we need to estimate two quantities to calculate ei , which are β̂1
and β̂2. Note that this can be also seen as as the variance of the residuals, or the variance
of the errors since

1
n − 2

n
∑
i=1

(ei − ē) 2 =
1

n − 2

n
∑
i=1

e2
i

▶ this equality comes since we can easily show that ē = 0 (you can check this with the data!).
▶ The square root of this is called Residual Standard Error or Standard Error of the Estimate.

RSE =
√

MSE
▶ In our regression result of Monthly Sales and Student Population, it is 13.83, how do we

interpret this?
▶ One way to interpret this is - on average sales deviate from the regression line by approximately

13,830 taka
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Simple Linear Regression
Residual Standard Error

▶ Let’s think about the variance of ϵ again. For now assume homoskedasticity, which means
V(ϵ) = V(ϵ|X = x) = σ2, where σ2 is some constant. So we can think about the
unconditional variance V(ϵ)

▶ In the following we plotted same figure we plotted before.
▶ Recall on the left V(ϵ) is high and on the right V(ϵ) is low

▶ It’s important to understand that high variance of ϵ indicates our lack of certainty in
prediction. Why? Because ϵ is the error that remains after we do prediction using CEF. So
if there is a lot of noise, even if we use CEF, we won’t be able to predict well.
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Simple Linear Regression
Residual Standard Error

▶ Now note that ϵ is not observable, so we cannot calculate its variance σ2 or standard
deviation σ, but using the estimated residuals we can get an estimate of the standard deviation
of ϵ.

▶ Here is an estimate, it’s called MSE,

MSE =
SSE
n − 2 =

1
n − 2

n
∑
i=1

(ei − ē)2 =
1

n − 2

n
∑
i=1

e2
i

▶ The last equality holds because we can show that ē = 0 (you can check this with the data!)
▶ Since this is an estimate of the variance of ϵ, we can take square root of this and get an

estimate of the standard deviation of ϵ, which is called Residual Standard Error or Standard
Error of the Estimate.

RSE =
√

MSE =

√
1

n − 2

n
∑
i=1

e2
i =

√
1

n − 2

n
∑
i=1

(yi − ŷi ) 2,

▶ So this gives an estimate of σ. If this is high we may conclude our uncertainty of prediction
is high. If this is low, this is good for our prediction.

▶ So just to clearly mention again, for a fixed sample, MSE is an estimate of σ2 and√
MSE = RSE is an estimate of σ.
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Model Assumptions, Interval Estimations and Testing
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Simple Linear Regression
Model Assumptions

▶ An important question is

Question: How do you know that the population regression function is linear like β0 + β1x? why
not some non-linear function?

Answer: It’s simply an assumption to make our life easier
▶ You will see that in Statistics / Econometrics often we will assume something about the

unknown world, and this will make our life easier ... in fact help us to get some possible
solutions...

▶ You might object by saying - wait why did we assume, the answer is the real life scenarios are
often so complex that it is almost impossible to learn from data without making any assumption at
all... so there is no free lunch..

▶ There is famous quote by George Box - “All models are wrong, but some are useful”.
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Simple Linear Regression
Model Assumptions

Figure 6: George Box (1919 - 2013), source - Wikipedia

▶ What Box meant here is, when we assume a model about the real life, it maybe wrong, but
still the model may be useful to learn something about the world.

▶ Sometimes the assumptions are very strong and sometimes we can relax certain
assumptions. In simple linear regression model, often we will often have following 4
assumptions,
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Simple Linear Regression
Model Assumptions

Simple Linear Regression Model - Assumptions
▶ Assumption 1 - We have an iid random sample, {(Y1,X1), (Y2,X2), . . . , (Yn,Xn)}. So all these pairs are

independent and identically distributed random variables.
▶ Assumption 2 - The CEF (also known as population regression function) is a linear function in Xi ,

E(Yi |Xi ) = β0 + β1Xi (3)

Here β0 is the intercept and β1 is the slope but this is for the population.
▶ Assumption 3 - Define

ϵi = Yi − (β0 + β1Xi )

We assume V(ϵi |Xi = x) = σ2 for all x values, where σ2 is a constant. This is known as
Homoskedasticity which means the variance of the error term is constant for all x values.

▶ Assumption 4* - Conditional on x , ϵi is Normally distributed with mean 0 and variance σ2, so we can
write ϵi |Xi = x ∼ N (0, σ2)

▶ The last assumption can be dropped if we have large sample size.
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Simple Linear Regression
Model Assumptions

▶ We need to mention some important points regarding the CEF error ϵi , particularly the
conditional expectation or conditional mean and the conditional variance of the CEF error.
Recall CEF error is

ϵi = Yi − E(Yi |Xi ) = Yi − (β0 + β1Xi )

▶ First note that because of the model assumptions, it is possible to show that the
conditional mean of CEF error is 0 (this is very to show, see Appendix)

E(ϵi |Xi ) = 0
▶ Also visually you can argue like this..... Let’s plot x values on the x-axis and ϵ values on

the y -axis. So for each x value, we have many ϵ values and the figure shows if we take
average of these ϵ values at every x , then the average will be 0 at every x .
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Simple Linear Regression
Model Assumptions

▶ Interestingly because of this the overall expectation or unconditional expectation of ϵi is
also 0, which means E(ϵi ) = 0 (this is an application of law of iterated expectation, but we
will not go into details here).
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Simple Linear Regression
Model Assumptions

▶ Now let’s talk about the conditional variance with V(ϵi | Xi = x).
▶ We assume Homoskedasticity which means the conditional variance of ϵi is constant for all

x values. Consider following picture where we plotted two population data and the red line is
the CEF function.

▶ On the left the variance of ϵi seems to be constant with x values, so this means
V(ϵi |Xi = x) is constant. But on the right the variance of ϵi is changing with x values (in
particular increasing), so this means V(ϵi |Xi = x) is NOT constant, it is called
heteroskedasticity! In the assumption we don’t allow heteroskedasticity, so we assume
V(ϵi |Xi = x) is constant for all x values.
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Simple Linear Regression
Model Assumptions

▶ Just using the definition of variances, we can show that conditional variance of ϵi is equal
to conditional variance of Yi , so this means (this is easy to understand from the picture)

V(ϵi | Xi = x) = V(Yi | Xi = x)
▶ Finally if we assume homoskedasticity, then we can show that the unconditional variance of

ϵi is also σ2, so

V(ϵi ) = V(ϵi |Xi = x) = σ2

▶ And also we have

V(ϵi ) = V(Yi ) = σ2
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Simple Linear Regression
Model Assumptions

▶ Now let’s see what happens if σ2 is high versus σ2 is low, again consider two population
data, for both V(ϵi |Xi = x) = σ2 is constant. But on the left it is is high and on the right
it is low

▶ Definitely, if the conditional variance is high then unconditional variance V(ϵ) is also high.
▶ High variance of ϵi means the errors are large, so in a random sample we may have a data

which could give us a line, that may not be close to the true line / population line....
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Model Assumptions, Interval Estimations and Testing

4. Confidence Interval for β0 and β1
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Confidence Interval for β0 and β1

Recall from old discussions:
▶ When we have a sample mean X , the formula for the (1 − α) percent confidence interval for

population mean µ would be,

X + t1−α/2,n−1 ŜE(X )

▶ For example if we want 95% confidence interval then α = 0.05

▶ Here t1−α/2,n−1 is the (1 − α)× 100 percent quantile of the t distribution with n − 1
degrees of freedom. Following functions can be used in and Excel

▶ In you can use qt(1 - α/2, n − 1),
▶ and in Excel, you can use the function T.INV(1 − α/2, n − 1).

▶ And ŜE(X ) is the estimate of the standard error of the sample mean, which is calculated as

ŜE(X ) =
s√
n

Recall the standard error is SE(X ) = σ√
n , but we never know σ, so we use s and then it

becomes estimate of the standard error, this is why we used “hat” symbol. The standard error
is coming from the sampling distribution of X , and it is the standard deviation of the
sampling distribution of X .
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Confidence Interval for β0 and β1

▶ One important point if the sample size becomes large, the t distribution becomes Normal
distribution, on that case we can use z1−α/2, rather then t1−α/2,n−1. Usually when the
sample size is more than 30 is considered as a large sample.
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Confidence Interval for β0 and β1

▶ Now in the regression problem we have two unknown parameters,

β0 and β1

▶ And for each of them it is possible to construct (1− α)× 100% percent confidence Interval,
let’s see them one by one,

▶ The confidence interval formula for β1 is

β̂1 ± t1−α/2,n−2 ŜE(β̂1)

▶ Excel automatically gives you 95% confidence interval and also in the setting you can
change, in you need to use the function confint(model).

▶ Note and important point is, in this case the sampling distribution is t distribution with
n − 2 degrees of freedom, rather than n − 1, the reason is we need to estimate two objects
β̂1 and β̂2.

▶ And again if the sample size becomes large we can use z1−α/2, in this case the confidence
interval would be

β̂1 ± z1−α/2 ŜE(β̂1)
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Confidence Interval for β0 and β1

▶ For our problem, the 95% confidence interval estimate for β1 is

(3.67, 6.34)
▶ What is the interpretation? It’s a fixed interval, the true value of β1 is either in this interval or

not. The 95% confidence interval means, if we construct this kind of intervals 100 times then 95 of
them will contain the true value of β1..

▶ Similarly we can construct confidence interval for β0 ... please construct and do the
interpretation.
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Model Assumptions, Interval Estimations and Testing

5. Significance Testing - t - test
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Significance Testing - t test

▶ Standard errors can also be used to perform hypothesis tests on the unknown coefficients.
The most common hypothesis test involves testing the null hypothesis of
Recall from old discussions:

▶ When we have a sample mean X , the t-test, for example the two tail test for µ, can be
done with following hypotheses,

H0 : µ = 30
Ha : µ ̸= 30

▶ In this case we used to calculate tcalc , which is

tcalc =
x − 30
ŜE (X )

▶ And then using critical value approach we reject the null if tcalc > t1−α/2,n−1 or
tcalc < tα/2,n−1

▶ Or using p-value approach, we reject the Null if p-value < α

106 / 122



Significance Testing - t test

▶ The testing problem in Regression is similar, we can different testing for β0 and β1, the
most common test is called the significance testing, which is following,

H0 : β1 = 0
Ha : β1 ̸= 0

▶ Recall the population regression function,

E(Yi |Xi ) = β0 + β1Xi

▶ So if we accept the Null, this means there is no significant relationship between X variable and Y
variable, in our case this means there is no significant relationship between student
population and monthly sales.

▶ Similarly if we reject the Null, then this means there is a significant relationship between student
population and monthly sales.

▶ In our case, we have

tcalc =
β̂1 − 0

ŜE
(

β̂1
) ,

▶ Both in and Excel output you already have the p value, so you don’t need to manually
do the testing, note that in page 31, we have p-value: 0.00002549, this means we can
reject the Null and the conclusion is - there is a significant relationship between student
population and monthly sales
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Significance Testing - t test

▶ If you use the critical value approach, you need to compare the tcalc with tα/2,n−2 and
t1−α/2,n−2, or in large samples just compare with zα/2 and z1−α/2
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Model Assumptions, Interval Estimations and Testing

6. Some Algebraic Details*
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Some Algebraic Details

▶ So far the story is following, we minimize sum of squared errors to get a line, this means we
are minimizing the following function,

n
∑
i=1

e2
i =

n
∑
i=1

(
Yi − (β̂0 + β̂1Xi )

)
2

▶ This problem is known as Ordinary Least Squares or OLS, and the solution is given by the
following equations,

β̂1 =
∑n

i=1
(
Xi − X

) (
Yi − Y

)
∑n

i=1
(
Xi − X

)
2 =

SX ,Y
S2

X

β̂0 = Y − β̂1X
▶ Where SX ,Y is the sample covariance between X and Y , and S2

X is the sample variance of
X .

▶ Now understanding the details regarding the solution is actually helpful, question is how to
derive these equations?

▶ There are two approaches,
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Some Algebraic Details

▶ 1. Plugin Approach or Method of Moments Approach: Solve the population problem and the
replace the Expectation with Sample Mean, this is called plugin approach or method of moments
approach. So in this case our task is to derive first

β1 =
E
[
(Xi − µXi )(Yi − µYi )

]
V (Xi )

=
Cov(Xi ,Yi )

V(Xi )

β0 = E[Yi ]− β1E[Xi ]

and then we can replace the population quantities with sample quantities.

▶ 2. Directly Finding Least Squares Solution: The other approach is to directly minimize the sample
MSE, which is called Least Squares Approach or Ordinary Least Squares or OLS. In this case we will
minimize the following function,

n

∑
i=1

e2
i =

n

∑
i=1

(
Yi − (β̂0 + β̂1Xi )

)
2

Which is actually same as minimizing the sample MSE, in the minimization problem we will
differentiate w.r.t. β̂0 and β̂1 and then we will get the solution.

▶ Let’s see the first one, the plugin approach, which is actually easier to understand,...
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Some Algebraic Details

Population Problem: Minimizing MSE for linear CEF function,

min
β0,β1

E
[
(Yi − (β0 + β1Xi ))

2]
Differentiate w.r.t. β0 gives :

E [Yi − β0 − β1Xi ] = 0

⇒ β0 = E[Yi ]− β1E[Xi ]

Differentiate w.r.t. β1 gives:

E [Xi (Yi − β0 − β1Xi )] = 0

Substitute β0 into the second equation, then we get,
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Some Algebraic Details

E[Xi Yi ]− E[Xi ]E[Yi ]︸ ︷︷ ︸
Cov(Xi ,Yi )

−β1
(
E
[
X2

i
]
− E[Xi ]

2)︸ ︷︷ ︸
V(Xi )

= 0

⇒ β1 =
Cov(Xi ,Yi )

V(Xi )
( requires V(Xi ) > 0)

and we already have

β0 = E[Yi ]− β1E[Xi ]

Note in the derivaion we used the following definitions,

Cov(Xi ,Yi ) = E
[
(Xi − E[Xi ])(Yi − E[Yi ])

]
= E[XYi ]− E[Xi ]E[Yi ]

V(Xi ) = E
[
(Xi − E[Xi ])

2
]
= E[X2

i ]− E[Xi ]
2
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Some Algebraic Details

▶ So what we proved is, in the population we have

β1 =
Cov(Xi ,Yi )

V(Xi )

β0 = E[Yi ]− β1E[Xi ]

▶ So in the population the slope coefficient β1 is the ratio of population covariance of Xi and Yi by
sample variance of Xi and the intercept coefficient β0 is the difference between the mean of Yi and
β1 times mean of Xi .

▶ Now note in the sample we just have,

β̂1 =
∑n

i=1
(
Xi − X

) (
Yi − Y

)
∑n

i=1
(
Xi − X

)
2

β̂0 = Y − β̂1X
▶ Where the hat quantities are just the sample estimates (or estimators) of the population

quantities,
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Some Algebraic Details

▶ Now we can also derive the same estimates by directly by minmizing the sample MSE,
which we will see in a minute, let’s derive some results, for CEF error ϵi = Yi − (β0 + β1Xi ),

▶ First note that assuming the CEF is linear, we can show that the conditional expectation of
ϵi is 0, which means

E(ϵi |Xi ) = Yi − (β0 + β1Xi ) = 0
▶ Using LIE we can also show that the unconditional expectation of ϵ is also 0, which means

E(ϵi ) = E(ϵ|Xi ) = 0
▶ Finally we can also show that the error is uncorrelated with Xi , this is because

Cov(Xi , ϵi ) = E(Xi ϵi )− E(Xi )E(ϵi ) = E(Xi ϵi )− 0 = 0
▶ Where using LIE we used

E(ϵi Xi ) = 0
▶ Which can be showed using LIE.

115 / 122



Some Algebraic Details

▶ Now let’s derive the sample estimates by minimizing the sample MSE, which is defined as

Sample MSE =
1

n − 2

n
∑
i=1

e2
i =

1
n − 2

n
∑
i=1

(Yi − (β0 + β1Xi ))
2

▶ Note that this is same as minimizing the following function, which is called Sum of Squared
Errors or SSE (since we can ignore multiplid constants when we are minimizing or
maximizing) with respect to β̂0 and β̂1,

SSE =
n
∑
i=1

(
Yi − (β̂0 + β̂1Xi )

)
2

So we need to take the partial derivatives of this function with respect to β̂0 and β̂1, set
them to 0 and then solve the resulting linear system.

∂ SSE
∂β̂0

= −2
n
∑
i=1

(
Yi − β̂0 − β̂1Xi

)
= 0 ⇒ nβ̂0 + β̂1

n
∑
i=1

Xi =
n
∑
i=1

Yi

∂ SSE
∂β̂1

= −2
n
∑
i=1

Xi
(

Yi − β̂0 − β̂1Xi
)
= 0 ⇒ β̂0

n
∑
i=1

Xi + β̂1
n
∑
i=1

X2
i =

n
∑
i=1

Xi Yi

Solve the 2 × 2 linear system

β̂1 =
n ∑n

i=1 Xi Yi − (∑n
i=1 Xi ) (∑n

i=1 Yi )

n ∑n
i=1 X2

i − (∑n
i=1 Xi ) 2 , β̂0 = Ȳ − β̂1X̄i
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Some Algebraic Details

where X̄i =
1
n ∑n

i=1 Xi , Ȳ = 1
n ∑n

i=1 Yi .

S2
x = ∑ (Xi − X̄i )

2, Sxy = ∑ (Xi − X̄i ) (Yi − Ȳ ) ,

β̂1 =
Sxy
S2

x
, β̂0 = Ȳ − β̂1X̄i .

▶ So bottom line we derived the same estimates, which are called Ordinary Least Squares or
OLS estimates, but now directly from the sample MSE, the previous approach is called
moment approach or plugin method, where we have a population problem and then we
derived the sample estimates. Often this is an easier approach and more intuitive.
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Some Algebraic Details

▶ Note that using the OLS esimates we can easily show that
n
∑
i=1

ei = 0,
n
∑
i=1

Xi ei = 0, where ei = Yi − β̂0 − β̂1Xi .

▶ These are useful properties, the first one means the sum of residuals is 0, and the second
one means the sum of residuals weighted by Xi is also 0.
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▶ Now we will derive the conditional mean and conditonal variance of β̂1 ...
▶ We can show that the conditional expectation and conditional variance of β̂1 are following,

E
(

β̂1
)
= β1,

V
(

β̂1
)
=

σ2

∑n
i=1 (Xi − X̄i ) 2

where σ2 is the population variance of the CEF error ϵi , or as we wrote before
V(ϵi |Xi = x) = σ2 for all x values and V

(
β̂1

)
is the variance of the sampling distribution

of β̂1 (think about repeated sampling).
▶ Now the standard error of β̂1 is defined as

SE
(

β̂1
)
=

√
V

(
β̂1

)
=

√
σ2

∑n
i=1 (Xi − X̄i ) 2 =

σ√
∑n

i=1 (Xi − X̄i ) 2

▶ In a practical scenario we never know σ2, so we use the sample variance of the prediction
error to estimate it, which is defined as

σ̂2 =
1

n − 2

n
∑
i=1

e2
i =

1
n − 2

n
∑
i=1

(
Yi − β̂0 − β̂1Xi

)
2 = MSE
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▶ So the estimate of the standard error of β̂1 is

ŜE
(

β̂1
)
=

σ̂√
∑n

i=1 (Xi − X̄i ) 2
=

RSE√
∑n

i=1 (Xi − X̄i ) 2

▶ Where RSE is the Residual Standard Error, or Standard Error of the Estimate, or
sometimes also called Root Mean Squared Error (in short RMSE) and defined as,
RSE =

√
MSE

▶ This is the quantity which any software calculates and gives you in the output, so you can
use it to construct confidence intervals and do hypothesis testing.
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▶ Let’s see how to derive this ....
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