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What’s Next!

▶ So we have been talking about simple linear regression (SLR) model in Chapter 3, and we
have seen how to estimate the parameters of the model, do hypothesis testing, do both
point and interval prediction or estimation of means / responses, see some diagnostic
checking of model assumptions and so on.

▶ However SLR model is not a good choice when we do have many predictors in hand and
want to see how all the variables influence the outcome variable together .... solution -
Multiple Linear Regression model.

▶ This chapter will be dedicated to understand the multiple linear regression model, how to
estimate the parameters, how to do hypothesis testing, how to do prediction and so on.

▶ However the sad part is, we will not cover many details, e.g., the mathematical details
about the estimation procedures or distributional results , etc (see Wooldridge (2009)
for an accessible discussion and Hansen (2022) for all technical details, both are excellent
references to have) but don’t worry you will see a lot more in the Econometrics course

▶ Nevertheless, we will see how to estimate the parameters using both Excel and , and do
lots of examples using .

▶ So let’s get started ...
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Multiple Linear Regression
Why we need to consider multiple covariates?

▶ Recall the sales data

▶ In the multiple linear regression problem, we try to incorporate more than one independent
variables and see how they influence the outcome variable jointly, recall the goal is to
understand two things 1) how each of the variables influence the outcome variable and 2)
how to do prediction of the outcome in this case.

▶ One option is to run three separate regressions, for three independent variables, Spop,
Aprice and Adv

▶ However, there are at least two issues with this approach,
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Multiple Linear Regression
Why we need to consider multiple covariates?

▶ First, It’s not clear how to predict sales now, which regression result to use if we want to predict
Sales?

▶ Second, often there is a correlation between predictors, and this will have impact on prediction, and
we are not capturing this correlation (we will see details regarding this!)

▶ So it’s better to use the all predictors and this is what is known as multiple linear regression
model, where the population regression function is following,

E(Yi |Xi ) = β0 + β1X1i + β2X2i + β3X3i

Note here Xi is a vector,

Xi =

X1i
X2i
X3i


with error

ϵi = Yi − E(Yi |Xi )

and we can also write,

Yi = β0 + β1X1i + β2X2i + β3X3i + ϵi
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Multiple Linear Regression
Why we need to consider multiple covariates?

▶ Here X1i represents student population, X2i represents average price and X3i is
advertisement expenditures and Yi is monthly sales

▶ Here we have 3 covariates / predictors, and there are 4 parameters to estimate,
β0, β1, β2, β3.

▶ In general if we have k variables, then we have to estimate k + 1 number of parameters,
β0, β1, . . . , βk , with the model

Yi = β0 + β1X1i + β2X2i + β3X3i + . . . + βkXki + ϵi

7 / 64



Multiple Linear Regression Model

The Problem of Estimation
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Multiple Linear Regression
The problem of Estimation

▶ For estimation first we have to write the model equation in a compact way, using vector
notation,

▶ First write X vector with all variables, it will be k + 1 dimensional vector

Xi =



1
X1i
X2i
X3i

...
Xki


▶ then write the β vector

βββ =


β0
β1
β2
...

βk



9 / 64



Multiple Linear Regression
The problem of Estimation

▶ Then we can write the equation,

Yi = X ′
i βββ + ϵi

▶ as before we can minimize Population MSE

minimize
βββ

E
[ (

Yi − X ′
i β
) 2
]

▶ So we find optimal β vector that minmizes the Population MSE, if you solve the problem
(note here we are taking a derivative of a scalar with respect to a vector, this is different, I
won’t go to the details here.... maybe at the Appendix), you will get

βββ = E(Xi X ′
i )

−1E(Xi Yi )

▶ From here we can propose a plugin estimator,

β̂ββ =
n
∑
i=1

(Xi X ′
i )

−1
n
∑
i=1

(Xi Yi )
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Multiple Linear Regression
The problem of Estimation

▶ The OLS estimator in this form is difficult to understand, but a more compact way is to use
the design matrix, first write the system of equations, for example suppose we have 3
variables, then

Y1 = β0 + β1X11 + β2X21 + β3X31 + ϵ1

Y2 = β0 + β1X12 + β2X22 + β3X32 + ϵ2

Y3 = β0 + β1X13 + β2X23 + β3X33 + ϵ3

...
Yn = β0 + β1X1n + β2X2n + β3X3n + ϵn

▶ Then we can write this in matrix form as
Y1
Y2
Y3
...

Yn

 =


1 X11 X21 X31
1 X12 X22 X32
1 X13 X23 X33
...

...
...

...
1 X1n X2n X3n




β0
β1
β2
...

βk

+


ϵ1
ϵ2
ϵ3
...

ϵn


YYY = Xβββ + ϵϵϵ
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Multiple Linear Regression
The problem of Estimation

▶ Where

X =


1 X11 X21 X31
1 X12 X22 X32
1 X13 X23 X33
...

...
...

...
1 X1n X2n X3n


▶ and

YYY =


Y1
Y2
Y3
...

Yn


and

ϵϵϵ =


ϵ1
ϵ2
ϵ3
...

ϵn


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Multiple Linear Regression
The problem of Estimation

▶ Note this is a matrix form of the data with the data, and with this we can get a nice
represantion of OLS estimator β̂ββ

β̂ββ =
n
∑
i=1

(Xi X ′
i )

−1
n
∑
i=1

(Xi Yi )

= X′X−1X′Y
▶ You don’t have to remember any of this, my goal was to show you that even if we have

multiple variables, the OLS estimator can still be calculated from data, although we need
new tools but it’s possible....
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Multiple Linear Regression
The problem of Estimation

▶ The expression β that we got is not really intuitive, recall in the simple linear regression we
had, covariance divided by variance type interpretation for the slope, is there something
similar here?

▶ Actually there is, there is a famous theorem known as Frisch-Waugh-Lovell theorem which
states that the slope coefficient in a multiple regression model can be obtained by
regressing the dependent variable on the error that we obtain from regressing the
independent variable of interest on all the other independent variables.

▶ So this means,
▶ 1. We regress the variable Xk on all the other variables call it vector Xk
▶ 2. Get the error call it ϵ̃k (this is what remains in Xk after removing the effects of the other

variables)
▶ 3. Now we regress the dependent variable Y on ϵ̃k
▶ 4. The coefficient is βk , which means,

βk =
Cov(Yi , ϵ̃k )

V(ϵ̃k )

▶ We will ommit the proof, but it is possible to prove using simple covariance formula.
▶ This is the population version, in the sample we have

β̂k =
SYi ,ẽk

S2
ẽk
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Multiple Linear Regression
The problem of Estimation

▶ Which is ratio of the sample covariance of the outcome variable Yi , and the error term ϵ̃k
(which is the prediction error for Xk after we regress it on all the other variables) and the
variance of the error term ϵ̃k .

▶ It is also possible to derive variance of β̂k which will be a variance covariance matrix.... but
we can skip that in this course, possible in Econometrics you will see that..
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Multiple Linear Regression
The problem of Estimation

▶ Let’s see how to estimate for a multiple linear regression model using for the
Advertisement data. Following code will give you the regression result
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Multiple Linear Regression
The problem of Estimation

code: MLR - Estimation

# now fit the regression model
model <- lm(Msales ~ Spop + Aprice + Adv, data = Fast_Food_Data)
summary(model)
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Multiple Linear Regression
The problem of Estimation

code: MLR - Estimation

# now fit the regression model
model <- lm(Msales ~ Spop + Aprice + Adv, data = Fast_Food_Data)
summary(model)

▶ you should see following output in the console
Call:
lm(formula = Msales ~ Spop + Aprice + Adv, data = Fast_Food_Data)

Residuals:
Min 1Q Median 3Q Max

-17.050 -3.567 3.994 5.859 8.889

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 126.1898 207.1527 0.609 0.565
Spop 0.6305 2.2105 0.285 0.785
Aprice -0.2934 0.6924 -0.424 0.687
Adv 0.3536 0.2030 1.741 0.132

Residual standard error: 11.01 on 6 degrees of freedom
Multiple R-squared: 0.9537, Adjusted R-squared: 0.9306
F-statistic: 41.22 on 3 and 6 DF, p-value: 0.0002129
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Multiple Linear Regression
The problem of Estimation

▶ You can get a little bit organized result if you use stargazer package, the command is
stargazer(model, type = "text")

▶ You should see something like this
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Multiple Linear Regression
The problem of Estimation
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Multiple Linear Regression
The problem of Estimation

▶ First note, the estimated coefficients are,

▶ β̂0 = 126.190, β̂1 = 0.631, β̂2 = −0.293, and β̂3 = 0.354
▶ Using this we can write the equation for the estimated regression function or sample regression

function

ŷi = β̂0 + β̂1x1i + β̂2x2i + β̂3x3i

M̂Sales = 126.190 + 0.631 Spop − 0.293 Aprice + 0.354 Adv
▶ Note that, if we plug some values in Spop, Aprice and newspaper expenditure we can use

this equation to predict monthly sales.
▶ How do we interpret β̂1 = 0.631? We follow the partial derivative type interpretation (recall

partial derivative ∂y
∂x1

shows the changes in y for a small change in x1 holding all other
variables constant), that is

Holding all other variables constant, if the student population increases by 1000, then approximately
the monthly sales is predicted to increase on average by 631 taka

Similar interpretations can be given for β̂2 and β̂3.
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Multiple Linear Regression
The problem of Estimation

Holding all other variables constant, if the average price increases by 1000 taka, then approximately
the monthly sales is predicted to decrease on average by 293 taka

Holding all other variables constant, if the advertising expenditure increases by 1000 taka, then
approximately the monthly sales is predicted to increase on average by 354 taka

▶ What is the interpretation of β̂0?
▶ If we have 0 student population, and the average price is 0 taka, and the advertising

expenditure is 0, then the monthly sales is predicted to be on average 126, 190 taka.
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Multiple Linear Regression
The problem of Estimation

▶ You should compare this interpretation with the interpretation of the simple linear
regression model.

▶ Notice the phrase “Holding all other variables constant”, this is coming from the partial
derivative type thinking, you can think that we are keeping the other covariates or
independent variables constant or at a fixed level.

▶ Well in math or in theory, this may sounds ok, but in reality we cannot keep the other
covariates constant when we change one variable. So it’s hard to take this interpretation in
a practical world, unless we get the data from any actual experiment. Then we can control
other variables influencing Y and we can change one variable and see the effect on Y .

▶ In this case, we are assuming we have observational data (what’s the difference between
experimental data and observational data?).
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Multiple Linear Regression
The problem of Estimation

▶ In theory the estimation procedure is same, we are minimizing SSE, here residual is

ei = yi − ŷi = yi − β̂0 − ˆ< ta1x1i − β̂2x2i − β̂3x3i

▶ So the SSE is

SSE =
n
∑
i=1

e2
i

=
n
∑
i=1

(yi − β̂0 − β̂1x1i − β̂2x2i − β̂3x3i )
2

▶ but the general optimization problem is solved using Matrix algebra, which we are avoiding
here.

▶ One thing to understand here is we are not fitting a line, rather we are fitting linear plane in
a p + 1 dimensional space.

▶ This can be visualized with two covariates at max, for example if we have only TV and
radio as an input variable, the points and the fitted plane will look like following
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Multiple Linear Regression
The problem of Estimation

▶ For our problem, we actually have 3 input variables, so it is not possible for us to visualize
any more, but in theory the idea extends in a similar way, to not only 3, but for as many
variables as we want!
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Multiple Linear Regression
The problem of Estimation

▶ When we perform multiple linear regression, we usually are interested in answering a
following important questions,
▶ 1. Are all the predictors individually significant? This means for example, is there a significant

relationship between Y and X1? Or is there a significant relationship between Y and X2? And so
on.

▶ 2. Is at least one of the predictors X1,X2, . . . ,Xk is useful for prediction?
▶ 3. Do all the predictors help to explain Y , or is only a subset of the predictors play role?
▶ 4. How well does the model fit the data?
▶ 5. Given a set of predictor values, how should we predict, and how accurate is our prediction?

▶ The way we will answer these questions are very similar to the way we did in SLR except
the answers for 2 and 3, where we have some new concepts.
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Multiple Linear Regression Model

Testing for Individual Significance
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Individual Testing of Coefficients

▶ How do you get the standard er
▶ Here individual testing means we will do separate t-test for each of the coefficients. For

example in the advertisement problem, this means we will do three separate hypothesis
tests.

▶ For coefficient β1,

H0 : β1 = 0 vs. Ha : β1 ̸= 0
▶ For coefficient β2

H0 : β2 = 0 vs. Ha : β2 ̸= 0
▶ For coefficient β3

H0 : β3 = 0 vs. Ha : β3 ̸= 0
▶ Doing this test is very easy, we just need to look at the t-statistic (and then compare with

critical values) or p-values directly for each of the coefficients from the result....
▶ We see that all the variables are not individually significant? Does it make sense? Maybe

we have bad sample, or maybe we are not using the right model?
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Multiple Linear Regression Model

Goodness of Fit or R2
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Goodness of Fit or R2

▶ The calculation of the SST, SSE and SSR in this case is also exactly the same, as we did in
SLR. Here are the formulas again,

SST =
n
∑
i=1

(yi − ȳ)2

SSE =
n
∑
i=1

e2
i =

n
∑
i=1

(yi − ŷi )
2

SSR =
n
∑
i=1

(ŷi − ȳ)2

▶ and recall

SST = SSE + SSR
▶ Now again we can calculate the measure for the goodness of fit, or coefficient of

determination R2 = SSR
SST , here it is also called multiple coefficient of determination, the word

multiple is used to indicate that we have multiple covariates.
▶ There is an important point for R2 in the multiple linear regression model that is, it will

always increase as we include more variables in our model, this is because the SSE will
always decrease as we add more variables to the model. The reason is, the more variables
we add, the more flexibility we have to fit the data.
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Goodness of Fit or R2

▶ However this doesn’t mean we did a good job, the problem is even if the variables seems to
be not associated with the response, R2 will still increase.

▶ So R2 cannot be a measure to comment about the variables in the model (there are ways
to do this in MLR, which we will see in the next section!)

▶ There is another measure known as adjusted R2, which is defined as

Adjusted R2 = 1 − (1 − R2)× n − 1
n − k − 1

▶ Here k is the number of variables in the model, notice as we increase k,
▶ the denominator of n−1

n−k−1 will decrease, which will increase the value of the fraction.
▶ this will increase (1 − R2)× n−1

n−k−1 term
▶ eventualy 1 − (1 − R2)× n−1

n−k−1 will decrease...

denominator will increase, so the adjusted R2 will decrease.
▶ So Adjusted R2 somehow penalizes the addition of variables to the model.
▶ Sometimes this is measure is preferred over R2 to comment about the model fit.
▶ Notice in page 11, we have seen the R2 and adjusted R2 for the advertisement data, the

Multiple R2 is 0.9537 and Adjusted R2 is 0.9306.
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Multiple Linear Regression Model

ANOVA Table and Overall Significance Testing
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Overall Testing

▶ Let’s first see the ANOVA table
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Overall Testing

SS Df MS F k-value

Regression SSR k MSR = SSR
k F = MSR

MSE ...

Error SSE n − k − 1 MSE = SSE
n−k−1

Total SST n − 1

Table 1: ANOVA table in MLR

▶ In to get a similar table first you need to run a null model (which means no predictor is
in the model) and then anova(null_model, model_model), you will get the ANOVA table
with the regression and null model, which is a bit more informative, then you will get
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Overall Testing

code: ANOVA table

> null_model <- lm(Msales ~ 1, data = Fast_Food_Data)
> anova(null_model, model)
Analysis of Variance Table

Model 1: Msales ~ 1
Model 2: Msales ~ Spop + Aprice + Adv

Res.Df RSS Df Sum of Sq F Pr(>F)
1 9 15730.0
2 6 727.9 3 15002 41.223 0.0002129 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

▶ It will be clear in a minute why Null model
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Overall Testing

▶ Overall Testing means, we need to test the following hypotheses

H0 : β1 = β2 = . . . = βk = 0 vs. Ha : at least one βj is non-zero
▶ Which says all of the true model coefficients are 0, or no predictors are associated with the

response, versus at least one of the model coefficient is non-zero or at one predictors is
associated with the response.

▶ So in our problem, this means

H0 : β1 = β2 = β3 = 0 vs. Ha : at least one βi is non-zero
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Overall Testing

▶ This test can be done with the F -test. The test statistic is,

F =
SSR/k

SSE/n − (k + 1) =
MSR
MSE (1)

▶ This is called F statistic and it is possible to show that under the Null this F -statistic will
follow an F distribution with k and n − k − 1 degrees of freedom, so we write F ∼ Fk,n−k−1

▶ ANOVA table will give you all the information for F test
▶ The numerator degrees of freedom or Df for SSR is k
▶ And the denominator degrees of freedom or Df for SSE if n − (k + 1) = n − k − 1

▶ The Df for SST is always n − 1 (why?)
▶ Doing this test from the regression output is similar, you need to check whether

Fcalc > Fcrit , then you reject the Null..... or we just need to look at the p value of the
statistic (which comes from the F distribution with k and n − k − 1 degrees of freedom)
and check whether p < α
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Overall Testing

▶ You might be wondering that, Given the individual tests / p-values for each variable, why
do we need to look at the overall test or F test?

After all, it seems likely that if any one of the p-values for the individual variables is very small, then
at least one of the predictors is related to the response, right?

▶ No, wrong, this argument is actually flawed, especially when the number of predictors p is
large. For instance, consider an example in which p = 100, then
H0 : β1 = β2 = . . . = β100 = 0 is true, so no variable is truly associated with the response.

▶ In this situation, it seems if we do individual testing then about 5% of coefficients will show
significance just by chance. In other words, we expect to see approximately five small p-values
even in the absence of any true association between the predictors and the response.

▶ In fact, it is likely that we will observe at least one p-value below 0.05 by chance!
▶ Hence, if we use the individual t-statistics and associated p-values in order to decide

whether or not there is any association between the variables and the response, there is a
very high chance that we will incorrectly conclude that there is a relationship.

▶ However, the F -statistic does not suffer from this problem because it adjusts for the
number of predictors, so in this case if we conclude the overall test is significant, then we
can conclude that at least one of the predictors is related to the response.
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Overall Testing

§. Restricted-Unrestricted F -test or F -test using Restricted Vs. Unrestricted Model

▶ Actually there is a general way of doing the F test in multiple linear regression model,
which is thinking about restrictions and then using restricted and unrestricted models.

▶ In this case the F -statistic is,

FR =
(SSER − SSE)/# of restrictions

SSE/n − k − 1 =
(SSER − SSE)/q
SSE/n − k − 1 (2)

▶ q is the number of restrictions.
▶ SSER is the SSE from the restricted model,
▶ SSE is simply the SSE that we know, so it is coming from the unrestricted model

▶ What do we mean by “restrictions”? Here you can think restrictions on parameters. For
example, maybe we are thinking that following model is correct,

Yi = β0 + β3X3i + ϵi

▶ In this case, the restriction is β1 = β2 = 0, so we have two restrictions, the Null hypothesis
in this case would be,

H0 = β1 = β2 = 0 vs. Ha : at least one of β1 or β2 is non-zero
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Overall Testing

▶ In doing the test is easy, you need to run following commands, and see the anova table,

code: ANOVA table

> restrictedmodel <- lm(Msales ~ Adv, data = Fast_Food_Data)
> anova(restrictedmodel, model)
Analysis of Variance Table

Model 1: Msales ~ Adv
Model 2: Msales ~ Spop + Aprice + Adv

Res.Df RSS Df Sum of Sq F Pr(>F)
1 8 838.56
2 6 727.85 2 110.71 0.4563 0.6539

▶ In this case, clearly the p value > 0.05, so we accept the Null, this means the model in the
Null is accepted or the restricted model is correct.
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Overall Testing

▶ In you can also do the test using critical value approach, in this case, you can calculate
Fcrit = F1−α = qt(1 - alpha, df1, df2), if we do this we get qf(.95, 2, 6) =
5.143253. In this case since Fcalc < Fcrit , we accept the Null.

▶ In Excel to calculate the critical value you can use =F.INV(1-alpha, Df1, Df2)
▶ And to calculate the p value you can use =1 - F.DIST(Fcalc, Df1, Df2) ...
▶ Question in the last hypothesis testing, we are imposing following three restrictions

β1 = 0, β2 = 0, and β3 = 0
▶ So in this case # of restrictions = q = 3, and the restricted model is

Y = β0 + ϵ

▶ But this means SSER = SST, because if we don’t include any covariate in the model, then
the fitted value will be ȳ , so the SSE will become SST.

SSER =
n
∑
i=1

e2
i =

n
∑
i=1

(yi − ŷi )
2 =

n
∑
i=1

(yi − β̂0)
2 =

n
∑
i=1

(yi − ȳ)2 = SST

▶ So this means in this approach the FR is same as F in equation (1), so you can think (1) is
a special case of (2).

▶ Now what is the benefit of this new approach? Ans: This is more general and we can use
this approach to test any kind of restrictions.
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Overall Testing

▶ For example maybe we want to do test whether

H0 : β1 = β2 = 0 Vs. Ha : at least one of β1 or β2 or β3 is non-zero
▶ Notice the alternative is same as before, but the null is different, here we are restricting

only two coefficients to be zero.
▶ So we need to another regression which which only have Adv and then calculate the SSE

for that model, then we can use the formula (2) to do the test.
▶ In this case the restricted model is

Y = β0 + β3X3 + ϵ

▶ Question: If we do restricted model excluding only one variable, so maybe our restriction is
β1 = 0, then is this similar to the individual testing of β1? The answer is yes!
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Extensions of MLR
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Extensions of MLR

▶ In this section we will see some extensions of MLR, which are very important in practice.
▶ The extensions are

▶ 1. Non-addivity or Interaction terms
▶ 2. Non-linear Relationships
▶ 3. Qualitative Predictors

▶ We will quickly see each of them one by one.
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Extensions of MLR

1. Non-addivity or Interaction terms
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Extensions of MLR
Non-addivity or Interaction terms

▶ Recall our example, where the true population regression function is

Yi = β0 + β1X1i + β2X2i + β3X3i + ϵi

▶ Here the covariates are coming in a additive way, this means we are modeling the effect of
each covariate in a additive way.

▶ But sometimes the relationship is not additive, rather it may happen that maybe the effect
advertisement is different for different levels of student population (so there is a synergy
effect of increasing both adv and student population).

▶ In this case the model would be

Yi = β0 + β1X1i + β2X2i + β3X3i + β4X1i X3i + ϵi

▶ The term X1X3 is called the interaction term between X1 and X3.
▶ In this case the estimated regression function is

ŷi = β̂0 + β̂1Spop + β̂2Aprice + β̂3Adv + β̂4Spop × Adv
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Non-addivity or Interaction terms

▶ In the code would be

code for adding interaction

model_interaction <- lm(Msales ~ Spop + Aprice + Adv + Spop*Adv, data =
Fast_Food_Data)

▶ We already know the interpretation of β̂1, β̂2 and β̂3 but what is the interpretation of β̂4?
▶ Note that we can write

M̂sales = β̂0 + β̂1 Spop + β̂2 Aprice + β̂3 Adv + β̂4( Spop × Adv)

=β̂0 + β̂1 Spop + β̂2 Aprice + (β̂3 + β̂4 Spop) Adv
▶ So we can say, For a given values of Average Price and Student Population, an additional

1000 BDT of advertising is predicted to change monthly sales by(
β̂3 + β̂4Spop

)
× 1, 000BDT
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3. Qualitative / Categorical Predictors
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Extensions of MLR
Qualitative / Categorical Predictors

▶ So far our Yi and Xi ’s are all quantitative variables, but sometimes we also have qualitative
/ categorical / factor variables.

▶ If Yi is qualitative it’s actually a different problem, sometimes it is called Classification
problem. This is discussed in Chapter 4 of James, Witten, Hastie and Tibshirani (2023).
For example Yi is binary and takes value 0 and 1, then depending on the value of X we
want to predict whether predicted Yi is 0 or 1, so we are classifying the response into two
classes. This is actually a Non-Linear regression problem.
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Qualitative / Categorical Predictors

▶ Recall the old data,
Restaurant Msales Spop Aprice Adv ECOStat
1 58 2 280 50 Low
2 105 6 260 120 Middle
3 88 8 270 100 Middle
4 118 8 250 150 High
5 117 12 240 200 High
6 137 16 230 180 Low
7 157 20 220 220 Middle
8 169 20 210 250 High
9 149 22 200 230 Middle
10 202 26 180 300 High

▶ In the ECOstat we have three categories, they are Low, Middle and High, so it’s a categorical
variable. But suppose we combine Low and Middle into one category called Low-Middle.
We do this for simplicity, later we will switch back to the original categories.

▶ So here is the new data set
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Qualitative / Categorical Predictors

Restaurant Msales Spop Aprice Adv ECOStat
1 58 2 280 50 Low-Middle
2 105 6 260 120 Low-Middle
3 88 8 270 100 Low-Middle
4 118 8 250 150 High
5 117 12 240 200 High
6 137 16 230 180 Low-Middle
7 157 20 220 220 Low-Middle
8 169 20 210 250 High
9 149 22 200 230 Low-Middle
10 202 26 180 300 High

▶ So now we have a variable X4i = ECOStat, which is a categorical variable that has two
levels / categories: Low-Middle and High.
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Qualitative / Categorical Predictors

▶ Let’s introduce a binary variable called Dummy Variable Di , so Di = 1 means High and
Di = 0 means Low-Middle, so the data set now looks like

Restaurant Msales Spop Aprice Adv ECOStat Di
1 58 2 280 50 Low-Middle 0
2 105 6 260 120 Low-Middle 0
3 88 8 270 100 Low-Middle 0
4 118 8 250 150 High 1
5 117 12 240 200 High 1
6 137 16 230 180 Low-Middle 0
7 157 20 220 220 Low-Middle 0
8 169 20 210 250 High 1
9 149 22 200 230 Low-Middle 0
10 202 26 180 300 High 1

▶ Let’s calculate grouped sample mean or average of Msales for Low-Middle and High regions.
1

N0
∑

i :Di=0
Yi︸ ︷︷ ︸

Grouped Mean of Msales for Low-Middle region

and 1
N1

∑
i :Di=1

Yi︸ ︷︷ ︸
Grouped Mean of Msales for High region

▶ Where N0 is the number of observations when Di = 0 and N1 is the number of observations
when Di = 1, so in this case N0 = 6 and N1 = 4.
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▶ And we can calculate,
1

N0
∑

i :Di=0
Yi =

1
6 (58 + 105 + 88 + 137 + 157 + 149) = 1

6 × 694 = 115.667

▶ Similarly we can calculate
1

N1
∑

i :Di=1
Yi =

1
4 (118 + 117 + 169 + 202) = 1

4 × 606 = 151.5
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Qualitative / Categorical Predictors

▶ It turns out that these two grouped means of MSales can be directly estimated using OLS
methods that we learned. Suppose we have the following regression model,

E(Yi |Di ) = β0 + β1Di

▶ Now here is an interesting thing,

when Di = 0, E(Yi |Di = 0) = β0 + β1 × 0 = β0

when Di = 1, E(Yi |Di = 1) = β0 + β1 × 1 = β0 + β1

▶ So this means,
▶ The population intercept coefficient β0, will give us the expected value of Y, when Di = 0.
▶ The population slope coefficient β0 + β1, will give us the expected value of Y, when Di = 1.
▶ And finally the difference in expected values between the two groups (Low-Middle and High) is

given by the slope coefficient β1.
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Qualitative / Categorical Predictors

▶ So now assuming the population regression model is

Yi = β0 + β1Di + ϵi

▶ if we run OLS, we get the estimated coefficients β̂0 and β̂1, and we have

β̂0 =
1

N0
∑

i :Di=0
Yi

▶ and

β̂1 =

(
1

N1
∑

i :Di=1
Yi

)
−
(

1
N0

∑
i :Di=0

Yi

)
▶ So ....

▶ The estimated intercept β̂0 represents the predicted average Yi when Xi = 0 (i.e., for the
Low-Middle group).

▶ The estimated slope β̂1 represents the difference in predicted average values of Yi between the High
and Low-Middle groups.

▶ The method we learned is called a Dummy variable regression and the binary variable Di is
called a dummy variable.

▶ Usually for the Dummy variable we use the letter Di . ....
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Qualitative / Categorical Predictors

▶ So far so good we have introduced one dummy variable Di for two categories (Low-Middle
and High).

▶ What if we have more than two categories? Recall in the original data we had three
categories Low, Middle and High, the idea is in this case we need to introduce two dummy
variables and code all three categories. In the following D1i represents the Middle category
and D2i represents the High category.

Restaurant Msales Spop Aprice Adv ECOStat D1i D2i
1 58 2 280 50 Low 0 0
2 105 6 260 120 Middle 1 0
3 88 8 270 100 Middle 1 0
4 118 8 250 150 High 0 1
5 117 12 240 200 High 0 1
6 137 16 230 180 Low 0 0
7 157 20 220 220 Middle 1 0
8 169 20 210 250 High 0 1
9 149 22 200 230 Middle 1 0
10 202 26 180 300 High 0 1
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Qualitative / Categorical Predictors

▶ Note that we have

D1i = 1 and D2i = 0 we have middle category
D1i = 0 and D2i = 1 we have high category
D1i = 0 and D2i = 0 we have low category

▶ And there is no category with D1i = 1 and D2i = 1
▶ This is the general rule for introducing dummy variables: for m categories, we need to

create m − 1 dummy variables.
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▶ Now consider following model with one dummy variable Di and one quantitative variable Xi ,

Yi = β0 + β1Xi + β2Di + ϵi

▶ In this case for both groups we have same slope β1 but the intercepts are different. In
particular,

E[Yi |Xi ,Di = 0] = β0 + β1Xi

E[Yi |Xi ,Di = 1] = (β0 + β2) + β1Xi

▶ picture....
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Qualitative / Categorical Predictors

▶ Next consider the case where we have an interaction term between the dummy variable and
the independent variable:

Yi = β0 + β1Xi + β2Di + β3Di · Xi + ϵi

▶ In this case when Di = 1, we get

E(Yi |Xi ,Di = 1) = β0 + β1Xi + β2 + β3Xi

= (β0 + β2) + (β1 + β3)Xi

▶ In this case when Di = 0, we get

E(Yi |Xi ,Di = 0) = β0 + β1Xi

▶ So both intercept and slopes are different for both groups.
▶ picture...
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2. Non-linear Relationships
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Non-linear Relationships

▶ Recall so far in the linear regression model we assumed a linear relationship between the
response and predictors. But in some cases, the true relationship between the response and
the predictors may be nonlinear, and using the techniques from the previous section we can
easily incorporate some non-linearity into the model (as long as the model is linear in
parameters).

▶ A simple approach for incorporating non-linear associations in a linear model is to include
transformed versions of the predictors.

▶ For example, for the auto data set maybe we fit a quadratic model, then the estimated
equation would be

m̂pg = β̂0 + β̂1 × horsepower + β̂2 × horsepower2

▶ or maybe a cubic model where we will have

m̂pg = β̂0 + β̂1 × horsepower + β̂2 × horsepower2 + β̂3 × horsepower3

▶ This is in someway multiple linear regression since we have multiple covariates, but the
covariates are coming from the same variable but transformed in different ways.
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Non-linear Relationships

▶ For the quadratic model the code is

code for quadratic model

mlr_fit_quadratic <- lm(mpg ~ horsepower + I(horsepower^2), data = auto_data)

▶ You will solve this problem in PS - 4.
▶ Important is here, we don’t have the simple partial derivative interpretation of MLR model

anymore, because the relationship is not linear. So we don’t try to interpret the coefficient
here.

▶ Here we will simply look whether our fit improves, we can check this by looking at the R2

or adjusted R2.
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